remotesensing-logo

Journal Browser

Journal Browser

Recent Advances in Remote Sensing Image Processing Technology

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Environmental Remote Sensing".

Deadline for manuscript submissions: 25 November 2024 | Viewed by 2440

Special Issue Editors


E-Mail Website
Guest Editor
College of Electrical and Engineering, Hunan University, Changsha 41000, China
Interests: image processing; machine learning; feature extraction; image segmentation; object recognition

E-Mail Website
Guest Editor
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Interests: target detection; information fusion; radar imaging; compressed sensing; dsitributed signal processing

E-Mail Website
Guest Editor
College of Computer Science, Chongqing University, Chongqing 400044, China
Interests: machine\deep learning foundations for remote sensing; remote sensing image classification; object detection; semantic segmentation; change detection; anomaly detection
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany
Interests: hyperspectral imaging; mineral exploration; remote sensing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Remote sensing is an advanced technology used to acquire information about an object, area, or phenomenon without making physical contact with it. It involves the utilization of various sensors and instruments to capture data from a distance, typically from platforms such as satellites, aircraft, drones, or ground-based devices. In recent years, with the advancement of deep learning and machine learning methods, remote sensing technology has achieved great success, which has been widely applied in many areas, such as environmental monitoring, precision agriculture, and military reconnaissance. However, there are still many challenges in the practical applications of remote sensing technologies, such as their high computational complexity, poor transferability, and low interpretability. These challenges not only limit the applications of remote sensing images but also demand more innovative models. The objective of this Special Issue is to cover various applications, advanced algorithms, and models in the remote sensing field. We welcome related methods and applications that include but are not limited to the following:

  • Remote sensing image processing technologies;
  • Multi-source image fusion methods;
  • Feature extraction methods;
  • Image classification methods;
  • Change detection methods;
  • Object detection methods;
  • Various applications.

Dr. Puhong Duan
Dr. Xueqian Wang
Prof. Dr. Fulin Luo
Dr. Junshi Xia
Dr. Richard Gloaguen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • remote sensing
  • image fusion
  • feature extraction
  • image classification
  • change detection
  • object detection

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 13422 KiB  
Article
Remote Sensing Micro-Object Detection under Global and Local Attention Mechanism
by Yuanyuan Li, Zhengguo Zhou, Guanqiu Qi, Gang Hu, Zhiqin Zhu and Xin Huang
Remote Sens. 2024, 16(4), 644; https://doi.org/10.3390/rs16040644 - 09 Feb 2024
Viewed by 818
Abstract
With the rapid advancement of technology, satellite and drone technologies have had significant impacts on various fields, creating both opportunities and challenges. In areas like the military, urban planning, and environmental monitoring, the application of remote sensing technology is paramount. However, due to [...] Read more.
With the rapid advancement of technology, satellite and drone technologies have had significant impacts on various fields, creating both opportunities and challenges. In areas like the military, urban planning, and environmental monitoring, the application of remote sensing technology is paramount. However, due to the unique characteristics of remote sensing images, such as high resolution, large-scale scenes, and small, densely packed targets, remote sensing object detection faces numerous technical challenges. Traditional detection methods are inadequate for effectively detecting small targets, rendering the accurate and efficient detection of objects in complex remote sensing images a pressing issue. Current detection techniques fall short in accurately detecting small targets compared to medium and large ones, primarily due to limited feature information, insufficient contextual data, and poor localization capabilities for small targets. In response, we propose an innovative detection method. Unlike previous approaches that often focused solely on either local or contextual information, we introduce a novel Global and Local Attention Mechanism (GAL), providing an in-depth modeling method for input images. Our method integrates fine-grained local feature analysis with global contextual information processing. The local attention concentrates on details and spatial relationships within local windows, enabling the model to recognize intricate details in complex images. Meanwhile, the global attention addresses the entire image’s global information, capturing overarching patterns and structures, thus enhancing the model’s high-level semantic understanding. Ultimately, a specific mechanism fuses local details with global context, allowing the model to consider both aspects for a more precise and comprehensive interpretation of images. Furthermore, we have developed a multi-head prediction module that leverages semantic information at various scales to capture the multi-scale characteristics of remote sensing targets. Adding decoupled prediction heads aims to improve the accuracy and robustness of target detection. Additionally, we have innovatively designed the Ziou loss function, an advanced loss calculation, to enhance the model’s precision in small target localization, thereby boosting its overall performance in small target detection. Experimental results on the Visdrone2019 and DOTA datasets demonstrate that our method significantly surpasses traditional methods in detecting small targets in remote sensing imagery. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing Image Processing Technology)
Show Figures

Figure 1

26 pages, 2291 KiB  
Article
End-to-End Convolutional Network and Spectral-Spatial Transformer Architecture for Hyperspectral Image Classification
by Shiping Li, Lianhui Liang, Shaoquan Zhang, Ying Zhang, Antonio Plaza and Xuehua Wang
Remote Sens. 2024, 16(2), 325; https://doi.org/10.3390/rs16020325 - 12 Jan 2024
Cited by 1 | Viewed by 764
Abstract
Although convolutional neural networks (CNNs) have proven successful for hyperspectral image classification (HSIC), it is difficult to characterize the global dependencies between HSI pixels at long-distance ranges and spectral bands due to their limited receptive domain. The transformer can compensate well for this [...] Read more.
Although convolutional neural networks (CNNs) have proven successful for hyperspectral image classification (HSIC), it is difficult to characterize the global dependencies between HSI pixels at long-distance ranges and spectral bands due to their limited receptive domain. The transformer can compensate well for this shortcoming, but it suffers from a lack of image-specific inductive biases (i.e., localization and translation equivariance) and contextual position information compared with CNNs. To overcome the aforementioned challenges, we introduce a simply structured, end-to-end convolutional network and spectral–spatial transformer (CNSST) architecture for HSIC. Our CNSST architecture consists of two essential components: a simple 3D-CNN-based hierarchical feature fusion network and a spectral–spatial transformer that introduces inductive bias information. The former employs a 3D-CNN-based hierarchical feature fusion structure to establish the correlation between spectral and spatial (SAS) information while capturing richer inductive bias and more discriminative local spectral-spatial hierarchical feature information, while the latter aims to establish the global dependency among HSI pixels while enhancing the acquisition of local information by introducing inductive bias information. Specifically, the spectral and inductive bias information is incorporated into the transformer’s multi-head self-attention mechanism (MHSA), thus making the attention spectrally aware and location-aware. Furthermore, a Lion optimizer is exploited to boost the classification performance of our newly developed CNSST. Substantial experiments conducted on three publicly accessible hyperspectral datasets unequivocally showcase that our proposed CNSST outperforms other state-of-the-art approaches. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing Image Processing Technology)
Show Figures

Graphical abstract

Back to TopTop