remotesensing-logo

Journal Browser

Journal Browser

Space-Geodetic Techniques (Third Edition)

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Satellite Missions for Earth and Planetary Exploration".

Deadline for manuscript submissions: 15 September 2025 | Viewed by 3631

Special Issue Editors


E-Mail Website
Guest Editor
Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, China
Interests: astronomy; orbit determination; spacecraft
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Geodesy and Cartography, 27 Modzelewski St., 02-679 Warsaw, Poland
Interests: GNSS data for geodynamics process; satellite gravity modelling; terrestrial (relative/absolute) gravity measurements; reference system/frame; height system
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Thank you all for your efforts and support that made our previous two Special Issues: ‘Space-Geodetic Techniques I’ and Space-Geodetic Techniques II’ a success. We have published a number of excellent studies and contributed to a reprint of articles in the open access journal Remote Sensing. Now, we are pleased to announce the release of this third volume to continue tracking the latest improvements in the field of space geodesy.

Space-geodetic techniques, such as very long baseline interferometry (VLBI), global navigation satellite systems (GNSSs), satellite laser ranging (SLR), interferometric synthetic aperture radar (InSAR), Doppler orbitography and radio positioning integrated by satellite (DORIS), and satellite altimetry and gravimetry, etc., have played an increasingly significant role in Earth exploration and geodetic research. Benefiting from the rapid development of satellite techniques and the creation of ground- and space-based observing systems, the establishment and maintenance of the Earth’s reference frame, the Earth’s rotation and geodynamics, high-precision navigation and positioning, gravity fields, geodetic observation, and the remote sensing and modeling of the Earth’s atmosphere and ionosphere, as well as deep-space exploration, are facilitated with more accurate and dense data and are attracting more and more attention focused on solving challenging scientific problems.

This third Special Issue welcomes all studies related to applications of different space-geodetic techniques in space and ground observations across the fields of planetary and Earth sciences. The topics may cover anything from the classical estimation of high-precision Earth observation, to more comprehensive aims and scales. Articles may address, but are not limited to, these topics:

  • Global and regional gravity field modeling;
  • Satellite gravimetry and applications in global change;
  • Satellite altimetry and oceanography;
  • Geodetic remote sensing;
  • Applications of remote sensing in the global water cycle;
  • Next-generation positioning;
  • Techniques and applications in high-precision GNSS;
  • Atmosphere modeling and monitoring;
  • Space weather research;
  • GNSS reflectometry;
  • Geodetic observations and geodynamics;
  • Crust deformation and natural hazard monitoring;
  • Earth rotation;
  • Planetary geodesy.

Dr. Xiaogong Hu
Dr. Walyeldeen Godah
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ground and satellite gravimetry
  • satellite altimetry
  • positioning
  • orbit determination
  • atmosphere
  • space weather
  • global climate change
  • geodynamics
  • natural hazard monitoring
  • earth rotation
  • planetary geodesy
  • GNSS-R

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

23 pages, 6378 KiB  
Article
Navigation Resource Allocation Algorithm for LEO Constellations Based on Dynamic Programming
by Sixin Wang, Xiaomei Tang, Jingyuan Li, Xinming Huang, Jiyang Liu and Jian Liu
Remote Sens. 2024, 16(12), 2231; https://doi.org/10.3390/rs16122231 - 19 Jun 2024
Cited by 1 | Viewed by 1379
Abstract
Navigation resource allocation for low-earth-orbit (LEO) constellations refers to the optimal allocation of navigational assets when the number and allocation of satellites in the LEO constellation have been determined. LEO constellations can not only transmit navigation enhancement signals but also enable space-based monitoring [...] Read more.
Navigation resource allocation for low-earth-orbit (LEO) constellations refers to the optimal allocation of navigational assets when the number and allocation of satellites in the LEO constellation have been determined. LEO constellations can not only transmit navigation enhancement signals but also enable space-based monitoring (SBM) for real-time assessment of GNSS signal quality. However, proximity in the frequencies of LEO navigation signals and SBM can lead to significant interference, necessitating isolated transmission and reception. This separation requires that SBM and navigation signal transmission be carried out by different satellites within the constellation, thus demanding a strategic allocation of satellite resources. Given the vast number of satellites and their rapid movement, the visibility among LEO, medium-earth-orbit (MEO), and geostationary orbit (GEO) satellites is highly dynamic, presenting substantial challenges in resource allocation due to the computational intensity involved. Therefore, this paper proposes an optimal allocation algorithm for LEO constellation navigation resources based on dynamic programming. In this algorithm, a network model for the allocation of navigation resources in LEO constellations is initially established. Under the constraints of visibility time windows and onboard transmission and reception isolation, the objective is set to minimize the number of LEO satellites used while achieving effective navigation signal transmission and SBM. The constraints of resource allocation and the mathematical expression of the optimization objective are derived. A dynamic programming approach is then employed to determine the optimal resource allocation scheme. Analytical results demonstrate that compared to Greedy and Divide-and-Conquer algorithms, this algorithm achieves the highest resource utilization rate and the lowest computational complexity, making it highly valuable for future resource allocation in LEO constellations. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques (Third Edition))
Show Figures

Graphical abstract

20 pages, 3230 KiB  
Article
SLR Validation and Evaluation of BDS-3 MEO Satellite Precise Orbits
by Ran Li, Chen Wang, Hongyang Ma, Yu Zhou, Chengpan Tang, Ziqian Wu, Guang Yang and Xiaolin Zhang
Remote Sens. 2024, 16(11), 2016; https://doi.org/10.3390/rs16112016 - 4 Jun 2024
Cited by 2 | Viewed by 995
Abstract
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing [...] Read more.
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing a basis for comprehensive evaluation of the BDS-3 satellite orbit. We utilized the SLR data from February to May 2023 to comprehensively evaluate the orbits of BDS-3 MEO satellites from different analysis centers (ACs). The results show that, whether during the eclipse season or the yaw maneuver season, the accuracy was not significantly decreased in the BDS-3 MEO orbit products released from the Center for Orbit Determination in Europe (CODE), Wuhan University (WHU), and the Deutsches GeoForschungsZentrum (GFZ) ACs, and the STD (Standard Deviation) of SLR residuals of those three ACs are all less than 5 cm. Among these, CODE had the smallest SLR residuals, with 9% and 12% improvement over WHU and GFZ, respectively. Moreover, the WHU precise orbits exhibit the smallest systematic biases, whether during non-eclipse seasons, eclipse seasons, or satellite yaw maneuver seasons. Additionally, we found some BDS-3 satellites (C32, C33, C34, C35, C45, and C46) exhibit orbit errors related to the Sun elongation angle, which indicates that continued effort for the refinement of the non-conservative force model further to improve the orbit accuracy of BDS-3 MEO satellites are in need. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques (Third Edition))
Show Figures

Figure 1

Other

Jump to: Research

15 pages, 3516 KiB  
Technical Note
Accuracy Evaluation of Multi-Technique Combination Nonlinear Terrestrial Reference Frame and EOP Based on Singular Spectrum Analysis
by Qiuxia Li, Xiaoya Wang and Yabo Li
Remote Sens. 2025, 17(5), 821; https://doi.org/10.3390/rs17050821 - 26 Feb 2025
Viewed by 332
Abstract
With the application and promotion of space geodesy, the popularization of remote sensing technology, and the development of artificial intelligence, a more accurate and stable Terrestrial Reference Frame (TRF) has become more urgent. For example, sea level change detection, crustal deformation monitoring, and [...] Read more.
With the application and promotion of space geodesy, the popularization of remote sensing technology, and the development of artificial intelligence, a more accurate and stable Terrestrial Reference Frame (TRF) has become more urgent. For example, sea level change detection, crustal deformation monitoring, and driverless cars, among others, require the accuracy of the terrestrial reference frame to be better than 1 mm in positioning and 0.1 mm/a in velocity, respectively. However, the current frequently used ITRF2014 and ITRF2020 do not satisfy such requirements. Therefore, this paper analyzes the coordinate residual time series data of linear TRFs and finds there are still some unlabeled jumps and time-dependent periodic signals, especially in the GNSS coordinate residuals, which can lead to incorrect station epoch coordinates and velocities, further affecting the accuracy and stability of the TRF. The unlabeled jumps could be detected by the sequential t-test analysis of regime shifts (STARS) combined with the generalized extreme Studentized deviate (GESD) algorithms introduced in our earlier paper. These nonlinear time-dependent periodic signals could be modeled better by singular spectrum analysis (SSA) with respect to least squares fitting; the fitting period is no longer composed of semi-annual and annual items, as with ITRF2014. The periods of continuous coordinate residual time series data longer than 5 years are obtained by FFT. The results show that there are no period signals for individual SLR/VLBI sites, and there are still other period terms, such as 34 weeks, 20.8 weeks and 17.3 weeks, in addition to semi-annual and annual items for some GNSS sites. Moreover, after SSA corrections, the re-calculated TRF and the corresponding EOP could be obtained, based on data from the Chinese Earth Rotation and Reference System Service (CERS) TRF and the Earth Orientation Parameter (EOPs) multi-technique determination software package (CERS TRF&EOP V2.0) developed by the Shanghai Astronomical Observatory (SHAO). Their accuracy could be evaluated with respect to the ITRF2014 and the IERS 14 C04, respectively. The results show that the accuracy and stability of the newly established a nonlinear TRF and EOP based on SSA have been greatly improved and better than a linear TRF and EOP. SSA is better than least squares fitting, especially for those coordinate residual time series with varying amplitude and phase. For GPS, comparing with the ITRF2014, the station coordinate accuracy of 10.8% is better than 1 mm, and the station velocity accuracy of 4.4% is better than 0.1 mm/year. There are 3.1% VLBI stations, for which coordinate accuracy is better than 1 mm and velocity accuracy is better than 0.1 mm/year. However, there are no stations with coordinates and velocities better than 1 mm and 0.1 mm/year for the SLR and DORIS. The WRMS values of polar motion x, polar motion y, LOD, and UT1-UTC are reduced by 2.4%, 3.2%, 2.7%, and 0.96%, respectively. The EOP’s accuracy in SOL-B, in addition to LOD, is better than that of the JPL. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques (Third Edition))
Show Figures

Figure 1

Back to TopTop