Geological and Engineering Problems in the Development of Unconventional Oil and Gas Reservoirs (2nd Edition)

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Energy Systems".

Deadline for manuscript submissions: 10 October 2025 | Viewed by 525

Special Issue Editor


E-Mail Website
Guest Editor
Petroleum Geosciences and Remote Sensing Program, Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
Interests: integrated petroleum geoscience; reservoir characterization; 3D static reservoir modeling; 2D/3D qualitative and quantitative seismic interpretation; well logging analysis; petroleum system analysis; source rock evaluation; basin analysis; sequence stratigraphy; seismic stratigraphy; conventional and unconventional reservoirs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

I am pleased to invite you to contribute to a Special Issue of Processes (MDPI) entitled “Geological and Engineering Problems in the Development of Unconventional Oil and Gas Reservoirs (2nd Edition)”. This Special Issue aims to bring together cutting-edge research on the latest challenges and advancements in unconventional hydrocarbon reservoir exploration and development.

As a Guest Editor, I encourage you to submit original research articles, reviews, and case studies on topics related to the following:

  • Reservoir Characterization: Petrophysical, geomechanical, and geochemical evaluations.
  • Seismic and Well Log Interpretation: 2D/3D seismic analysis, fracture modeling, and log-based reservoir assessment.
  • Exploration and Development Strategies: Advances in hydraulic fracturing, drilling technologies, and enhanced recovery methods.
  • Basin Analysis and Petroleum Systems: Source rock evaluation, migration pathways, and unconventional resource assessment.
  • Machine Learning and AI Applications: Predictive modeling for reservoir performance and optimization.

This Special Issue provides a great opportunity for you to showcase your research to a global audience, contributing to the advancement of unconventional reservoir studies.

I sincerely hope that you will consider submitting your valuable work to this Special Issue. You may send your manuscript immediately or at any point before the deadline. All papers will be reviewed and published on an ongoing basis upon receipt. Please feel free to share this invitation with your colleagues and research teams. Should you have any questions, do not hesitate to contact me.

Looking forward to your contributions.

Prof. Dr. Mohamed I. Abdel-Fattah
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • unconventional reservoirs
  • hydraulic fracturing
  • reservoir characterization
  • seismic and well log analysis
  • basin modeling and petroleum systems
  • machine learning and AI applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 5227 KiB  
Article
Study on Wellbore Instability Mechanism and High-Performance Water-Based Drilling Fluid for Deep Coal Reservoir
by Jinliang Han, Jie Xu, Jinsheng Sun, Kaihe Lv, Kang Ren, Jiafeng Jin, Hailong Li, Yifu Long and Yang Wu
Processes 2025, 13(5), 1262; https://doi.org/10.3390/pr13051262 - 22 Apr 2025
Viewed by 223
Abstract
Deep coalbed methane (CBM) reservoirs have the characteristics of low permeability, low porosity, and low water saturation, which easily experience wellbore instability due to drilling fluid, severely affecting drilling safety. Based on the physical property analysis of coal samples, the wellbore instability mechanism [...] Read more.
Deep coalbed methane (CBM) reservoirs have the characteristics of low permeability, low porosity, and low water saturation, which easily experience wellbore instability due to drilling fluid, severely affecting drilling safety. Based on the physical property analysis of coal samples, the wellbore instability mechanism of the deep CBM reservoir was investigated by multiple methods. It was found that the wellbore instability is mainly caused by drilling fluid intrusion and the interaction between drilling fluid and coal formation; the fracture pressure of coal after immersion decreased from 27.4 MPa to 25.0 MPa because of the imbibition of drilling fluid. A novel nano-plugging agent with a size of 460 nm was prepared that can cement coal particles to form disc-shaped briquettes with a tensile strength of 2.27 MPa. Based on that, an effective anti-collapse drilling fluid for deep coal rock reservoirs was constructed, the invasion depth of the optimized drilling fluid was only 6 mm. The CT result shows that the number of fractures and pores in coal rock significantly reduced after treatment with the wellbore-stabilizing drilling fluid; nano-plugging anti-collapse agent in drilling fluid can form a dense layer on the coal surface, and then the hydration swelling of clay in the wellbore region can be effectively suppressed. Finally, the drilling fluid in this work can achieve the purpose of sealing and wettability alternation to prevent the collapse of the wellbore in the deep coal reservoir. Full article
Show Figures

Figure 1

21 pages, 8657 KiB  
Article
The Discovery of Fracture Tip-Driven Stress Concentration: A Key Contributor to Casing Deformation in Horizontal Wells
by Hai Li, Hongbo Wu, Guo Wen, Wentao Zhao, Hongjiang Zou, Yanchi Liu, Qixin Li, Weiyi Wang and Yulong Liu
Processes 2025, 13(4), 1121; https://doi.org/10.3390/pr13041121 - 8 Apr 2025
Viewed by 192
Abstract
Casing deformation (CD) is generally believed to be caused by the slip of fractures in the strata and its shear effects on horizontal wells. However, the casing deformation mode based on this theory cannot fully match the measurement data, and the differential deformation [...] Read more.
Casing deformation (CD) is generally believed to be caused by the slip of fractures in the strata and its shear effects on horizontal wells. However, the casing deformation mode based on this theory cannot fully match the measurement data, and the differential deformation characteristics and the mechanism behind this phenomenon are not completely clear. To elucidate the mechanisms of CD and enhance prevention and control measures, the CD modes in Shunan Block were identified and deformation mechanisms of these modes were comprehensively investigated. Our research shows the following: (1) Under the mechanism of penetrating fracture shear deformation, CD exhibit obvious shear deformation, and the natural fractures near the intersection point with the wellbore are prone to form a higher risk of deformation. (2) Natural fractures with tips approaching the wellbore experience intense stress concentration (1.6 times higher than shear stress) during activation, resulting in compression and asymmetrical CD. (3) The shear deformation induced by penetrating fractures is 15.52 mm, while the fracture tip-induced compression deformation demonstrates a substantially greater magnitude at 44.17 mm. This compressive deformation exceeds the shear deformation by a factor of approximately 2.85. (4) The stress concentration at the fracture tip is highly sensitive to the injection rate. Hence, adherence to the “avoiding stress concentration” principle is crucial in hydraulic fracturing operations. The conclusion indicates that in addition to penetrating fracture shear deformation, fracture tip compression deformation is another significant mechanism that causes CD. This research finding can offer theoretical guidance for developing effective measures to prevent and control CD in the exploitation of deep shale gas. Full article
Show Figures

Figure 1

Back to TopTop