Special Issue "Sustainable Polymeric Composites: Fabrication and Application"

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Circular and Green Polymer Science".

Deadline for manuscript submissions: closed (31 August 2022) | Viewed by 1952

Special Issue Editors

Dr. Lilia Sabantina
E-Mail Website
Guest Editor
Junior Research Group Nanomaterias, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
Interests: carbon nanofibers; needle-free electrospinning; mycelium Pleurotus Ostreatus /polymer nano-composites; 3D printing; 2D/ 3D design process; pattern design; fashion design; smart textiles
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Abdelghani Benyoucef
E-Mail Website
Guest Editor
L.S.T.E. Laboratory, University Mustapha Stambouli of Mascara, Mascara 29000, Algeria
Interests: nanocomposites; conducting polymers; hybrid materials; adsorption; pollutants treatment; activated carbon

Special Issue Information

Dear Colleagues,

Sustainable polymer composites from biomass and hybrid materials from biobased and artificial sources are an actively developing area of modern research. A wide spectrum of applications of such composites ranges from filtration, catalysts, and adsorption applications to nanomedicine, and from protective clothing and smart textiles to energy storage or information technology.

Advanced polymers and nanocomposites, battery materials and multifunctional hybrid materials, and bio-inspired and hybrid nanomaterials are just a few examples of research areas where advanced polymer materials play an essential role.

We would like to invite you to contribute to this Special Issue on “Sustainable Polymer Composites: Fabrication and Application”. Here, we will highlight recent advances in the synthesis and fabrication of new polymer materials, structure–property relationships of polymer composites, materials science, and fundamental research for various applications. 

Dr. Lilia Sabantina
Prof. Dr. Abdelghani Benyoucef
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hybrid materials
  • biomass
  • nanofibers
  • carbon materials
  • adsorption of organic pollutants
  • biodegradable polymers
  • electronic materials
  • smart textiles
  • energy storage
  • clothing

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Polydopamine and Mercapto Functionalized 3D Carbon Nano-Material Hybrids Synergistically Modifying Aramid Fibers for Adhesion Improvement
Polymers 2022, 14(19), 3988; https://doi.org/10.3390/polym14193988 - 23 Sep 2022
Viewed by 188
Abstract
In order to solve the problem of poor interfacial adhesion between aramid fibers and a rubber matrix, an efficient and mild modification method was proposed via polydopamine and mercapto functionalized graphene oxide (GO) and carbon nanotube (CNTs) hybrids synergistically modifying aramid fibers. GO [...] Read more.
In order to solve the problem of poor interfacial adhesion between aramid fibers and a rubber matrix, an efficient and mild modification method was proposed via polydopamine and mercapto functionalized graphene oxide (GO) and carbon nanotube (CNTs) hybrids synergistically modifying aramid fibers. GO and CNTs were firstly stacked and assembled into unique 3D GO-CNTs hybrids through π-π conjugation. Then, the mercapto functionalization of the assembled 3D GO-CNTs hybrids was realized via the dehydration condensation reaction between the hydroxyls of GO and the silanol groups of coupling agent. Finally, the mercapto functionalized 3D GO-CNTs hybrids were grafted onto the aramid fibers, which were pre-modified by polydopamine through the Michael addition reaction mechanism. The surface morphology and chemical structures of GO-CNTs hybrids and fibers and the interfacial adhesion strength between fibers and rubber matrix were investigated. The results showed that the modification method had brought about great changes in the surface structure of fibers but not generated any damage traces. More importantly, this modification method could improve the interfacial strength by 110.95%, and the reason was not only the reactivity of functional groups but also that the 3D GO-CNTs hybrids with excellent mechanical properties could effectively share interfacial stress. The method proposed in this paper was universal and had the potential to be applied to other high-performance fiber-reinforced composites. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Figure 1

Article
Numerical Modeling of Damage Caused by Seawater Exposure on Mechanical Strength in Fiber-Reinforced Polymer Composites
Polymers 2022, 14(19), 3955; https://doi.org/10.3390/polym14193955 - 22 Sep 2022
Viewed by 295
Abstract
Fiber-reinforced polymer composites are frequently used in marine environments which may limit their durability. The development of accurate engineering tools capable of simulating the effect of seawater on material strength can improve design and reduce structural costs. This paper presents a numerical-based approach [...] Read more.
Fiber-reinforced polymer composites are frequently used in marine environments which may limit their durability. The development of accurate engineering tools capable of simulating the effect of seawater on material strength can improve design and reduce structural costs. This paper presents a numerical-based approach to predict the stress–strain response of fiber-reinforced polymer composites exposed to different seawater immersion times, ranging from 0 to 900 days. A three-dimensional numerical model has been implemented using a static implicit finite element analysis along with a user-defined material (UMAT) subroutine. Puck’s failure criterion was used for ultimate failure analysis of the laminates, while Fick’s first diffusion law was used to predict the seawater absorption rate. Overall, the simulated stress–strain curves were close to those obtained experimentally. Moreover, the model agreed well with the experimental data regarding the maximum stress and the strain at failure leading to maximum errors lower than 9% and 11%, respectively. Additionally, the simulated strain fields agreed well with the experimental results measured by digital image correlation. Finally, the proposed procedure was also used to identify the most critical surfaces to protect the mechanical components from marine environments. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Figure 1

Article
Carbon/Basalt Fibers Hybrid Composites: Hybrid Design and the Application in Automobile Engine Hood
Polymers 2022, 14(18), 3917; https://doi.org/10.3390/polym14183917 - 19 Sep 2022
Viewed by 249
Abstract
The low-velocity impact properties and the optimal hybrid ratio range for improving the property of hybrid composites are studied, and the application of hybrid composites in automobile engine hoods is discussed in this paper. The low-velocity impact properties of the hybrid composite material [...] Read more.
The low-velocity impact properties and the optimal hybrid ratio range for improving the property of hybrid composites are studied, and the application of hybrid composites in automobile engine hoods is discussed in this paper. The low-velocity impact properties of the hybrid composite material are simulated under different stacking sequences and hybrid ratios by finite element simulation, and the accuracy of the finite element model (FEM) is verified through experiments. Increasing the proportion of carbon fiber (CF) in the hybrid layer and placing the basalt fiber (BF) on the compression side can improve the energy absorption capacity under low-velocity impact loads. CF/BF hybrid composite hoods are optimized based on the steel hood and the low-velocity impact performance of the hybrid composite. The BCCC layer absorbs the most energy under low-velocity impact loads. Compared with CFRP, the energy absorbed under 10 J and 20 J impact energy is increased by 26.1% and 14.2%, respectively. Through the low-velocity impact properties of hybrid composites, we found that placing BF on the side of the load and keep the ratio below 50%, while increasing the proportion of CF in the hybrid laminate can significantly improve the property of the hybrid laminate. The results show that the stiffness and modal properties of the hybrid composite can meet the design index requirements, and the pedestrian protection capability of the hood will also increase with the increase in the proportion of BF. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Figure 1

Article
Synthesis and Application of Levofloxacin–Tin Complexes as New Photostabilizers for Polyvinyl Chloride
Polymers 2022, 14(18), 3720; https://doi.org/10.3390/polym14183720 - 06 Sep 2022
Viewed by 262
Abstract
Polyvinyl chloride (PVC) is a synthetic polymer with a wide range of applications with impact on our daily life. It can undergo photodegradation with toxic products that are hazardous to both human health and the environment. In addition, photodegradation shortens the useful lifetime [...] Read more.
Polyvinyl chloride (PVC) is a synthetic polymer with a wide range of applications with impact on our daily life. It can undergo photodegradation with toxic products that are hazardous to both human health and the environment. In addition, photodegradation shortens the useful lifetime of the material. Elongation of the effective lifespan of PVC is, therefore, a salient area of research. Recently, a lot of attention has been directed toward the design, preparation, and usage of new additives that are capable of reducing the photodecomposition of PVC. This work investigates the synthesis of new levofloxacin-tin complexes and their potential exploitation against the photodecomposition of PVC. Several levofloxacin-tin complexes have been synthesized, in high yields, by a simple procedure and characterized. The potential use of the additives as photostabilizers for PVC has been investigated through the determination of weight loss, molecular weight depression, formation of fragments containing carbonyl and alkene groups, and surface morphology of irradiated PVC films. The results show that the new additives are effective in reducing the photodegradation of PVC. The new levofloxacin-tin complexes act as absorbers of ultraviolet light and quenchers of highly reactive species such as free radicals produced during photodegradation. They are more effective photostabilizers compared with organotin complexes previously reported. The complexes containing aromatic substituents were more effective than those counterparts having aliphatic residues. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Graphical abstract

Article
Investigations for Design Estimation of an Anisotropic Polymer Matrix Composite Plate with a Central Circular Hole under Uniaxial Tension
Polymers 2022, 14(10), 1977; https://doi.org/10.3390/polym14101977 - 12 May 2022
Viewed by 418
Abstract
Composite plates with holes are common in engineering applications, such as the automotive and aerospace industries. Three-dimensional braided carbon/epoxy polymers are an advanced textile composite and are used in various structures due to their high damage resistance and relatively low manufacturing cost. When [...] Read more.
Composite plates with holes are common in engineering applications, such as the automotive and aerospace industries. Three-dimensional braided carbon/epoxy polymers are an advanced textile composite and are used in various structures due to their high damage resistance and relatively low manufacturing cost. When a braided polymer plate with a hole is used in engineering applications, it is necessary to know its mechanical behavior under loading conditions using analysis theory to design it better. However, the effects of stress distribution with shear deformation theories on the variable thickness of the braided polymer plate (carbon/epoxy) with a hole under tensile loading have not been reported yet. In this paper, a study is conducted to evaluate shear deformation theories for a braided polymer plate with variable thickness and a hole in the center, analyzing the stresses and their concentration variations. First, multiscale modeling and analysis are performed to determine the mechanical properties of the plate. Then, finite element analyses are performed on a homogenized macro plate with a hole. The analysis process is verified by comparison with the available literature. Results show that the first-order shear deformation theory calculates 37, 56, and 70 percent less maximum transverse shear stress than the high-order shear deformation theory (Reissner–Mindlin) and the elasticity theory for thin, moderately thick, and thick braided polymer plates, respectively. Additionally, changing the theory has no significant effect on circumferential stress, radial stress, Von Mises stress, and stress concentration factor. As a result, this research can provide researchers and designers with structural intuition for a braided polymer plate with a center hole. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Figure 1

Review

Jump to: Research

Review
The Mechanical Properties of Plant Fiber-Reinforced Geopolymers: A Review
Polymers 2022, 14(19), 4134; https://doi.org/10.3390/polym14194134 (registering DOI) - 02 Oct 2022
Abstract
Both geopolymer and plant fiber (PF) meet the requirements of sustainable development. Geopolymers have the advantages of simple preparation process, conservation and environmental protection, high early strength, wide source of raw materials, and low cost. They have broad application prospects and are considered [...] Read more.
Both geopolymer and plant fiber (PF) meet the requirements of sustainable development. Geopolymers have the advantages of simple preparation process, conservation and environmental protection, high early strength, wide source of raw materials, and low cost. They have broad application prospects and are considered as the most potential cementitious materials to replace cement. However, due to the ceramic-like shape and brittleness of geopolymers, their flexural strength and tensile strength are poor, and they are sensitive to microcracks. In order to solve the brittleness problem of geopolymers, the toughness of composites can be improved by adding fibers. Adding fibers to geopolymers can limit the growth of cracks and enhance the ductility, toughness and tensile strength of geopolymers. PF is a good natural polymer material, with the advantages of low density, high aspect ratio. It is not only cheap, easy to obtain, abundant sources, but also can be repeatedly processed and biodegradable. PF has high strength and low hardness, which can improve the toughness of composites. Nowadays, the research and engineering application of plant fiber-reinforced geopolymers (PFRGs) are more and more extensive. In this paper, the recent studies on mechanical properties of PFRGs were reviewed. The characteristics of plant fibers and the composition, structure and properties of geopolymers were reviewed. The compatibility of geopolymer material and plant fiber and the degradation of fiber in the substrate were analyzed. From the perspective of the effect of plant fibers on the compression, tensile and bending properties of geopolymer, the reinforcing mechanism of plant fibers on geopolymer was analyzed. Meanwhile, the effect of PF pretreatment on the mechanical properties of the PFRGs was analyzed. Through the comprehensive analysis of PFFRGs, the limitations and recommendations of PFFRG are put forward. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Figure 1

Back to TopTop