Special Issue "Advances in Manufacturing and Characterization of Functional Polyesters"

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: closed (30 September 2020).

Special Issue Editors

Prof. Dr. Rafael Antonio Balart Gimeno
Website
Guest Editor
Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
Interests: aliphatic polyesters; blends; compatibilization; advanced characterization; functional additives; unsaturated polyester resins; composites
Special Issues and Collections in MDPI journals
Prof. Dr. Sergio Torres-Giner
Website
Guest Editor
Research Institute of Food Engineering for Development (IIAD), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
Interests: bio-based and biodegradable polymers; green composites; polymerization of biopolymers; processing of bioplastics; nanofibers obtained by electrospinning; sustainable polymer technologies for food preservation; controlled release of active compounds in plastic formulations; biopolymers for food packaging; Bioeconomy; Circular Economy
Special Issues and Collections in MDPI journals
Prof. Dr. Octavio Ángel Fenollar Gimeno
Website
Guest Editor
Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Spain
Interests: manufacturing; polymer analysis; thermal characterization; biopolyesters; biodegradation; film processing; nanoparticle functionalization; manufacturing of composites; thermosetting resins
Special Issues and Collections in MDPI journals
Prof. Dr. Nestor Montañés Muñoz
Website
Guest Editor
Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV)
Interests: FESEM & TEM characterization; polymer processing; polyester; compatibilizer; environmentally friendly additives; wood plastic composites; extrusion
Special Issues and Collections in MDPI journals
Dr. Teodomiro Boronat Vitoria
Website
Guest Editor
Department of Mechanical and Materials Engineering, Materials Technology Institute (ITM), Universitat Politècnica de València (UPV), Valencia, Spain
Interests: polymer manufacturing; 3D printing; polyesters; medical applications; process modeling; computer-aided engineering (CAE); computer-aided manufacturing (CAM); polymer stents; fixation plates
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

In the last years, we have assisted to a remarkable grow on the use of polyesters. Although some aromatic polyesters such as PET of PBT are well known, in the recent years, great interest on aliphatic polyesters has been detected. This group includes both petroleum-derived polyesters such as poly(e-caprolactone)-PCL, poly(butylene succinate)-PBS, poly(glycolic acid)-PGA among others, and polyesters from renewable resources such as poly(lactic acid)-PLA and the promising poly(hydroxyalkanoates)-PHAs. These polymers offer a positive environmental efficiency and can be functionalized by synthesis, copolymerization, additives (at micro and nano-scale), surface modification and so on to tailor the desired properties in terms of mechanical, chemical, thermal, barrier properties, biodegradation, biocompatibility. This can widen the potential use of these materials in industrial sectors such as packaging, textiles and apparel, automotive, construction and building and other specialized sectors such as medicine (medical devices, tissue engineering, resorbable components, controlled drug release), electrical and electronics, shape-memory devices, among others.

This special issue aims to compile original and cutting-edge research works in the field of synthesis, characterization, manufacturing and applications of functional polyesters.

Prof. Dr. Rafael Antonio Balart Gimeno
Prof. Dr. Sergio Torres-Giner
Prof. Dr. Octavio Ángel Fenollar Gimeno
Prof. Dr. Nestor Montañés Muñoz
Prof. Dr. Teodomiro Boronat Vitoria
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Polyesters
  • functional
  • blends
  • additives
  • compatibilizers
  • synthesis
  • biodegradation
  • copolymerization
  • manufacturing
  • characterization.

Related Special Issue

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

Open AccessEditorial
Advances in Manufacturing and Characterization of Functional Polyesters
Polymers 2020, 12(12), 2839; https://doi.org/10.3390/polym12122839 - 29 Nov 2020
Abstract
In the last few years, a remarkable growth in the use of functional polyesters has been observed [...] Full article

Research

Jump to: Editorial

Open AccessArticle
High Thermal Stability, High Tensile Strength, and Good Water Barrier Property of Terpolyester Containing Biobased Monomer for Next-Generation Smart Film Application: Synthesis and Characterization
Polymers 2020, 12(11), 2458; https://doi.org/10.3390/polym12112458 - 23 Oct 2020
Cited by 1
Abstract
This research synthesizes novel copolyester (PCITN) containing biobased isosorbide, 1,4-cyclohexandimethanol, terephthalic acid, and 2,6-naphthalene dicarboxylic acid and characterize its properties. The PCITN copolyester was extruded into film, and its performance properties including: tensile strength, Young’s modulus, thermal, dimensional stability, barrier (water barrier), and [...] Read more.
This research synthesizes novel copolyester (PCITN) containing biobased isosorbide, 1,4-cyclohexandimethanol, terephthalic acid, and 2,6-naphthalene dicarboxylic acid and characterize its properties. The PCITN copolyester was extruded into film, and its performance properties including: tensile strength, Young’s modulus, thermal, dimensional stability, barrier (water barrier), and optical (birefringence and transmittance) were analyzed after uniaxial stretching. The films have higher Tg, Tm, dimensional stability, and mechanical properties than other polyester-type polymers, and these performance properties are significantly increased with increasing stretching. This is due to the increased orientation of molecular chains inside the films, which was confirmed by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and birefringence results. Good water barrier (0.54%) and lower birefringence (△n: 0.09) of PCITN film compared to poly(ethylene terephthalate) (PET), poly(ethylene 2,6-naphthalate) (PEN), and polyimide (PI) films, used as conventional substrate materials for optical devices, make it an ideal candidate as performance material for next-generation flexible devices. Full article
Show Figures

Graphical abstract

Open AccessArticle
Characterization on Polyester Fibrous Panels and Their Homogeneity Assessment
Polymers 2020, 12(9), 2098; https://doi.org/10.3390/polym12092098 - 15 Sep 2020
Cited by 2
Abstract
Nowadays, fibrous polyester materials are becoming one of the most important alternatives for controlling reverberation time by absorbing unwanted sound energy in the automobile and construction fields. Thus, it is worthy and meaningful to characterize their acoustic behavior. To do so, non-acoustic parameters, [...] Read more.
Nowadays, fibrous polyester materials are becoming one of the most important alternatives for controlling reverberation time by absorbing unwanted sound energy in the automobile and construction fields. Thus, it is worthy and meaningful to characterize their acoustic behavior. To do so, non-acoustic parameters, such as tortuosity, viscous and thermal characteristic lengths and thermal permeability, must be determined. Representative panels of polyester fibrous material manufactured by perpendicular laying technology are thus tested via the Bayesian reconstruction procedure. The estimated porosity and airflow resistivity are found in good agreement with those tested via direct measurements. In addition, the homogeneity of polyester fibrous panels was characterized by investigating the mean relative differences of inferred non-acoustic parameters from the direct and reverse orientation measurements. Some parameters, such as tortuosity, porosity and airflow resistivity, exhibit very low relative differences. It is found that most of the panels can be assumed homogeneous along with the panel thickness, the slight inhomogeneity mostly affecting the thermal characteristic length. Full article
Show Figures

Graphical abstract

Open AccessArticle
Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications
Polymers 2020, 12(8), 1703; https://doi.org/10.3390/polym12081703 - 29 Jul 2020
Cited by 2
Abstract
We aimed to study the distribution of hydroxyapatite (HA) and halloysite nanotubes (HNTs) as fillers and their influence on the hydrophobic character of conventional polymers used in the biomedical field. The hydrophobic polyester poly (ε-caprolactone) (PCL) was blended with its more hydrophilic counterpart [...] Read more.
We aimed to study the distribution of hydroxyapatite (HA) and halloysite nanotubes (HNTs) as fillers and their influence on the hydrophobic character of conventional polymers used in the biomedical field. The hydrophobic polyester poly (ε-caprolactone) (PCL) was blended with its more hydrophilic counterpart poly (lactic acid) (PLA) and the hydrophilic acrylate poly (2-hydroxyethyl methacrylate) (PHEMA) was analogously compared to poly (ethyl methacrylate) (PEMA) and its copolymer. The addition of HA and HNTs clearly improve surface wettability in neat samples (PCL and PHEMA), but not that of the corresponding binary blends. Energy-dispersive X-ray spectroscopy mapping analyses show a homogenous distribution of HA with appropriate Ca/P ratios between 1.3 and 2, even on samples that were incubated for seven days in simulated body fluid, with the exception of PHEMA, which is excessively hydrophilic to promote the deposition of salts on its surface. HNTs promote large aggregates on more hydrophilic polymers. The degradation process of the biodegradable polyester PCL blended with PLA, and the addition of HA and HNTs, provide hydrophilic units and decrease the overall crystallinity of PCL. Consequently, after 12 weeks of incubation in phosphate buffered saline the mass loss increases up to 48% and mechanical properties decrease above 60% compared with the PCL/PLA blend. Full article
Show Figures

Graphical abstract

Open AccessArticle
Assessment of the Mechanical and Thermal Properties of Injection-Molded Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/Hydroxyapatite Nanoparticles Parts for Use in Bone Tissue Engineering
Polymers 2020, 12(6), 1389; https://doi.org/10.3390/polym12061389 - 21 Jun 2020
Cited by 2
Abstract
In the present study, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] was reinforced with hydroxyapatite nanoparticles (nHA) to produce novel nanocomposites for potential uses in bone reconstruction. Contents of nHA in the 2.5–20 wt % range were incorporated into P(3HB-co-3HHx) by melt [...] Read more.
In the present study, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] was reinforced with hydroxyapatite nanoparticles (nHA) to produce novel nanocomposites for potential uses in bone reconstruction. Contents of nHA in the 2.5–20 wt % range were incorporated into P(3HB-co-3HHx) by melt compounding and the resulting pellets were shaped into parts by injection molding. The addition of nHA improved the mechanical strength and the thermomechanical resistance of the microbial copolyester parts. In particular, the addition of 20 wt % of nHA increased the tensile (Et) and flexural (Ef) moduli by approximately 64% and 61%, respectively. At the highest contents, however, the nanoparticles tended to agglomerate, and the ductility, toughness, and thermal stability of the parts also declined. The P(3HB-co-3HHx) parts filled with nHA contents of up to 10 wt % matched more closely the mechanical properties of the native bone in terms of strength and ductility when compared with metal alloys and other biopolymers used in bone tissue engineering. This fact, in combination with their biocompatibility, enables the development of nanocomposite parts to be applied as low-stress implantable devices that can promote bone reconstruction and be reabsorbed into the human body. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effects of Magnesium Oxide (MgO) Shapes on In Vitro and In Vivo Degradation Behaviors of PLA/MgO Composites in Long Term
Polymers 2020, 12(5), 1074; https://doi.org/10.3390/polym12051074 - 08 May 2020
Cited by 3
Abstract
Biodegradable devices for medical applications should be with an appropriate degradation rate for satisfying the various requirements of bone healing. In this study, composite materials of polylactic acid (PLA)/stearic acid-modified magnesium oxide (MgO) with a 1 wt% were prepared through blending extrusion, and [...] Read more.
Biodegradable devices for medical applications should be with an appropriate degradation rate for satisfying the various requirements of bone healing. In this study, composite materials of polylactic acid (PLA)/stearic acid-modified magnesium oxide (MgO) with a 1 wt% were prepared through blending extrusion, and the effects of the MgO shapes on the composites’ properties in in vitro and in vivo degradation were investigated. The results showed that the long-term degradation behaviors of the composite samples depended significantly on the filler shape. The degradation of the composites is accelerated by the increase in the water uptake rate of the PLA matrix and the composite containing the MgO nanoparticles was influenced more severely by the enhanced hydrophilicity. Furthermore, the pH value of the phosphate buffer solution (PBS) was obviously regulated by the dissolution of MgO through the neutralization of the acidic product of the PLA degradation. In addition, the improvement of the in vivo degrading process of the composite illustrated that the PLA/MgO materials can effectively regulate the degradation of the PLA matrix as well as raise its bioactivity, indicating the composites for utilization as a biomedical material matching the different requirements for bone-related repair. Full article
Show Figures

Figure 1

Open AccessArticle
Effect of Almond Shell Waste on Physicochemical Properties of Polyester-Based Biocomposites
Polymers 2020, 12(4), 835; https://doi.org/10.3390/polym12040835 - 06 Apr 2020
Cited by 3
Abstract
Polyester-based biocomposites containing INZEA F2® biopolymer and almond shell powder (ASP) at 10 and 25 wt % contents with and without two different compatibilizers, maleinized linseed oil and Joncryl ADR 4400®, were prepared by melt blending in an extruder, followed [...] Read more.
Polyester-based biocomposites containing INZEA F2® biopolymer and almond shell powder (ASP) at 10 and 25 wt % contents with and without two different compatibilizers, maleinized linseed oil and Joncryl ADR 4400®, were prepared by melt blending in an extruder, followed by injection molding. The effect of fine (125–250 m) and coarse (500–1000 m) milling sizes of ASP was also evaluated. An improvement in elastic modulus was observed with the addition of< both fine and coarse ASP at 25 wt %. The addition of maleinized linseed oil and Joncryl ADR 4400 produced some compatibilizing effect at low filler contents while biocomposites with a higher amount of ASP still presented some gaps at the interface by field emission scanning electron microscopy. Some decrease in thermal stability was shown which was related to the relatively low thermal stability and disintegration of the lignocellulosic filler. The added modifiers provided some enhanced thermal resistance to the final biocomposites. Thermal analysis by differential scanning calorimetry and thermogravimetric analysis suggested the presence of two different polyesters in the polymer matrix, with one of them showing full disintegration after 28 and 90 days for biocomposites containing 25 and 10 wt %, respectively, under composting conditions. The developed biocomposites have been shown to be potential polyester-based matrices for use as compostable materials at high filler contents. Full article
Show Figures

Figure 1

Open AccessArticle
Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers
Polymers 2020, 12(4), 821; https://doi.org/10.3390/polym12040821 - 04 Apr 2020
Cited by 6
Abstract
Green composites made of polylactide (PLA) and short flaxseed fibers (FFs) at 20 wt % were successfully compounded by twin-screw extrusion (TSE) and subsequently shaped into pieces by injection molding. The linen waste derived FFs were subjected to an alkalization pretreatment to remove [...] Read more.
Green composites made of polylactide (PLA) and short flaxseed fibers (FFs) at 20 wt % were successfully compounded by twin-screw extrusion (TSE) and subsequently shaped into pieces by injection molding. The linen waste derived FFs were subjected to an alkalization pretreatment to remove impurities, improve the fiber surface quality, and make the fibers more hydrophobic. The alkali-pretreated FFs successfully reinforced PLA, leading to green composite pieces with higher mechanical strength. However, the pieces also showed lower ductility and toughness and the lignocellulosic fibers easily detached during fracture due to the absence or low interfacial adhesion with the biopolyester matrix. Therefore, four different compatibilization strategies were carried out to enhance the fiber–matrix interfacial adhesion. These routes consisted on the silanization of the alkalized FFs with a glycidyl silane, namely (3-glycidyloxypropyl) trimethoxysilane (GPTMS), and the reactive extrusion (REX) with three compatibilizers, namely a multi-functional epoxy-based styrene-acrylic oligomer (ESAO), a random copolymer of poly(styrene-co-glycidyl methacrylate) (PS-co-GMA), and maleinized linseed oil (MLO). The results showed that all the here-tested compatibilizers improved mechanical strength, ductility, and toughness as well as the thermal stability and thermomechanical properties of the green composite pieces. The highest interfacial adhesion was observed in the green composite pieces containing the silanized fibers. Interestingly, PS-co-GMA and, more intensely, ESAO yielded the pieces with the highest mechanical performance due to the higher reactivity of these additives with both composite components and their chain-extension action, whereas MLO led to the most ductile pieces due to its secondary role as plasticizer for PLA. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Thermomechanical and Morphological Properties of Poly(ethylene terephthalate)/Anhydrous Calcium Terephthalate Nanocomposites
Polymers 2020, 12(2), 276; https://doi.org/10.3390/polym12020276 - 30 Jan 2020
Cited by 1
Abstract
Calcium terephthalate anhydrous salts (CATAS), synthetized by reaction of terephthalic acid with metal (Ca) oxide were incorporated at different weight contents (0–30 wt. %) in recycled Poly(ethylene terephthalate) (rPET) by melt processing. Their structure, morphology, thermal and mechanical properties (tensile and flexural behavior) [...] Read more.
Calcium terephthalate anhydrous salts (CATAS), synthetized by reaction of terephthalic acid with metal (Ca) oxide were incorporated at different weight contents (0–30 wt. %) in recycled Poly(ethylene terephthalate) (rPET) by melt processing. Their structure, morphology, thermal and mechanical properties (tensile and flexural behavior) were investigated. Results of tensile strength of the different formulations showed that when the CATAS content increased from 0.1 to 0.4 wt. %, tangible changes were observed (variation of tensile strength from 65.5 to 69.4 MPa, increasing value for E from 2887 up to 3131 MPa, respectively for neat rPET and rPET_0.4CATAS). A threshold weight amount (0.4 wt. %) of CATAS was also found, by formation at low loading, of a rigid amorphous fraction at the rPET/CATAS interface, due to the aromatic interactions (π−π conjugation) between the matrix and the filler. Above the threshold, a restriction of rPET/CATAS molecular chains mobility was detected, due to the formation of hybrid mechanical percolation networks. Additionally, enhanced thermal stability of CATAS filled rPET was registered at high content (Tmax shift from 426 to 441 °C, respectively, for rPET and rPET_30CATAS), essentially due to chemical compatibility between terephthalate salts and polymer molecules, rich in stable aromatic rings. The singularity of a cold crystallization event, identified at the same loading level, confirmed the presence of an equilibrium state between nucleation and blocking effect of amorphous phase, basically related to the characteristic common terephthalate structure of synthetized Ca–Metal Organic Framework and the rPET matrix. Full article
Show Figures

Figure 1

Open AccessArticle
Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate)
Polymers 2020, 12(1), 174; https://doi.org/10.3390/polym12010174 - 09 Jan 2020
Cited by 4
Abstract
In the present study, partially bio-based polyethylene terephthalate (bio-PET) was melt-mixed at 15–45 wt% with recycled polyethylene terephthalate (r-PET) obtained from remnants of the injection blowing process of contaminant-free food-use bottles. The resultant compounded materials were thereafter shaped into pieces by injection molding [...] Read more.
In the present study, partially bio-based polyethylene terephthalate (bio-PET) was melt-mixed at 15–45 wt% with recycled polyethylene terephthalate (r-PET) obtained from remnants of the injection blowing process of contaminant-free food-use bottles. The resultant compounded materials were thereafter shaped into pieces by injection molding for characterization. Poly(styrene-co-glycidyl methacrylate) (PS-co-GMA) was added at 1–5 parts per hundred resin (phr) of polyester blend during the extrusion process to counteract the ductility and toughness reduction that occurred in the bio-PET pieces after the incorporation of r-PET. This random copolymer effectively acted as a chain extender in the polyester blend, resulting in injection-molded pieces with slightly higher mechanical resistance properties and nearly the same ductility and toughness than those of neat bio-PET. In particular, for the polyester blend containing 45 wt% of r-PET, elongation at break (εb) increased from 10.8% to 378.8% after the addition of 5 phr of PS-co-GMA, while impact strength also improved from 1.84 kJ·m−2 to 2.52 kJ·m−2. The mechanical enhancement attained was related to the formation of branched and larger macromolecules by a mechanism of chain extension based on the reaction of the multiple glycidyl methacrylate (GMA) groups present in PS-co-GMA with the hydroxyl (–OH) and carboxyl (–COOH) terminal groups of both bio-PET and r-PET. Furthermore, all the polyester blend pieces showed thermal and dimensional stabilities similar to those of neat bio-PET, remaining stable up to more than 400 °C. Therefore, the use low contents of the tested multi-functional copolymer can successfully restore the properties of bio-based but non-biodegradable polyesters during melt reprocessing with their recycled petrochemical counterparts and an effective mechanical recycling is achieved. Full article
Show Figures

Graphical abstract

Open AccessArticle
Controlling the Isothermal Crystallization of Isodimorphic PBS-ran-PCL Random Copolymers by Varying Composition and Supercooling
Polymers 2020, 12(1), 17; https://doi.org/10.3390/polym12010017 - 20 Dec 2019
Cited by 5
Abstract
In this work, we study for the first time, the isothermal crystallization behavior of isodimorphic random poly(butylene succinate)-ran-poly(ε-caprolactone) copolyesters, PBS-ran-PCL, previously synthesized by us. We perform nucleation and spherulitic growth kinetics by polarized light optical microscopy (PLOM) and overall [...] Read more.
In this work, we study for the first time, the isothermal crystallization behavior of isodimorphic random poly(butylene succinate)-ran-poly(ε-caprolactone) copolyesters, PBS-ran-PCL, previously synthesized by us. We perform nucleation and spherulitic growth kinetics by polarized light optical microscopy (PLOM) and overall isothermal crystallization kinetics by differential scanning calorimetry (DSC). Selected samples were also studied by real-time wide angle X-ray diffraction (WAXS). Under isothermal conditions, only the PBS-rich phase or the PCL-rich phase could crystallize as long as the composition was away from the pseudo-eutectic point. In comparison with the parent homopolymers, as comonomer content increased, both PBS-rich and PCL-rich phases nucleated much faster, but their spherulitic growth rates were much slower. Therefore, the overall crystallization kinetics was a strong function of composition and supercooling. The only copolymer with the eutectic composition exhibited a remarkable behavior. By tuning the crystallization temperature, this copolyester could form either a single crystalline phase or both phases, with remarkably different thermal properties. Full article
Show Figures

Graphical abstract

Open AccessArticle
Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior
Polymers 2019, 11(12), 2099; https://doi.org/10.3390/polym11122099 - 14 Dec 2019
Cited by 7
Abstract
This work reports the effect of the addition of an oligomer of lactic acid (OLA), in the 5–20 wt% range, on the processing and properties of polylactide (PLA) pieces prepared by injection molding. The obtained results suggested that the here-tested OLA mainly performs [...] Read more.
This work reports the effect of the addition of an oligomer of lactic acid (OLA), in the 5–20 wt% range, on the processing and properties of polylactide (PLA) pieces prepared by injection molding. The obtained results suggested that the here-tested OLA mainly performs as an impact modifier for PLA, showing a percentage increase in the impact strength of approximately 171% for the injection-molded pieces containing 15 wt% OLA. A slight plasticization was observed by the decrease of the glass transition temperature (Tg) of PLA of up to 12.5 °C. The OLA addition also promoted a reduction of the cold crystallization temperature (Tcc) of more than 10 °C due to an increased motion of the biopolymer chains and the potential nucleating effect of the short oligomer chains. Moreover, the shape memory behavior of the PLA samples was characterized by flexural tests with different deformation angles, that is, 15°, 30°, 60°, and 90°. The obtained results confirmed the extraordinary effect of OLA on the shape memory recovery (Rr) of PLA, which increased linearly as the OLA loading increased. In particular, the OLA-containing PLA samples were able to successfully recover over 95% of their original shape for low deformation angles, while they still reached nearly 70% of recovery for the highest angles. Therefore, the present OLA can be successfully used as a novel additive to improve the toughness and shape memory behavior of compostable packaging articles based on PLA in the new frame of the Circular Economy. Full article
Show Figures

Graphical abstract

Open AccessArticle
Functionalization of Partially Bio-Based Poly(Ethylene Terephthalate) by Blending with Fully Bio-Based Poly(Amide) 10,10 and a Glycidyl Methacrylate-Based Compatibilizer
Polymers 2019, 11(8), 1331; https://doi.org/10.3390/polym11081331 - 10 Aug 2019
Cited by 2
Abstract
This work shows the potential of binary blends composed of partially bio-based poly(ethyelene terephthalate) (bioPET) and fully bio-based poly(amide) 10,10 (bioPA1010). These blends are manufactured by extrusion and subsequent injection moulding and characterized in terms of mechanical, thermal and thermomechanical properties. To overcome [...] Read more.
This work shows the potential of binary blends composed of partially bio-based poly(ethyelene terephthalate) (bioPET) and fully bio-based poly(amide) 10,10 (bioPA1010). These blends are manufactured by extrusion and subsequent injection moulding and characterized in terms of mechanical, thermal and thermomechanical properties. To overcome or minimize the immiscibility, a glycidyl methacrylate copolymer, namely poly(styrene-ran-glycidyl methacrylate) (PS-GMA; Xibond™ 920) was used. The addition of 30 wt % bioPA provides increased renewable content up to 50 wt %, but the most interesting aspect is that bioPA contributes to improved toughness and other ductile properties such as elongation at yield. The morphology study revealed a typical immiscible droplet-like structure and the effectiveness of the PS-GMA copolymer was assessed by field emission scanning electron microcopy (FESEM) with a clear decrease in the droplet size due to compatibilization. It is possible to conclude that bioPA1010 can positively contribute to reduce the intrinsic stiffness of bioPET and, in addition, it increases the renewable content of the developed materials. Full article
Show Figures

Graphical abstract

Open AccessArticle
Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes
Polymers 2019, 11(8), 1314; https://doi.org/10.3390/polym11081314 - 06 Aug 2019
Cited by 3
Abstract
This work reports the potential of poly(lactic acid)—PLA composites with different halloysite nanotube (HNTs) loading (3, 6 and 9 wt%) for further uses in advanced applications as HNTs could be used as carriers for active compounds for medicine, packaging and other sectors. This [...] Read more.
This work reports the potential of poly(lactic acid)—PLA composites with different halloysite nanotube (HNTs) loading (3, 6 and 9 wt%) for further uses in advanced applications as HNTs could be used as carriers for active compounds for medicine, packaging and other sectors. This work focuses on the effect of HNTs on mechanical, thermal, thermomechanical and degradation of PLA composites with HNTs. These composites can be manufactured by conventional extrusion-compounding followed by injection molding. The obtained results indicate a slight decrease in tensile and flexural strength as well as in elongation at break, both properties related to material cohesion. On the contrary, the stiffness increases with the HNTs content. The tensile strength and modulus change from 64.6 MPa/2.1 GPa (neat PLA) to 57.7/2.3 GPa MPa for the composite with 9 wt% HNTs. The elongation at break decreases from 6.1% (neat PLA) down to a half for composites with 9 wt% HNTs. Regarding flexural properties, the flexural strength and modulus change from 116.1 MPa and 3.6 GPa respectively for neat PLA to values of 107.6 MPa and 3.9 GPa for the composite with 9 wt% HNTs. HNTs do not affect the glass transition temperature with invariable values of about 64 °C, or the melt peak temperature, while they move the cold crystallization process towards lower values, from 112.4 °C for neat PLA down to 105.4 °C for the composite containing 9 wt% HNTs. The water uptake has been assessed to study the influence of HNTs on the water saturation. HNTs contribute to increased hydrophilicity with a change in the asymptotic water uptake from 0.95% (neat PLA) up to 1.67% (PLA with 9 wt % HNTs) and the effect of HNTs on disintegration in controlled compost soil has been carried out to see the influence of HNTs on this process, which is a slight delay on it. These PLA-HNT composites show good balanced properties and could represent an interesting solution to develop active materials. Full article
Show Figures

Graphical abstract

Back to TopTop