polymers-logo

Journal Browser

Journal Browser

Fiber-Reinforced Polymer Composites: Fabrication, Characterization and Application

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 5858

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Chudong-ro 92, Bondong-eup, Wanju-gun, Jeollabuk-do 55324, Korea
Interests: fracture and recovery of composite materials; core–shell nanofiber; carbon-fiber-reinforced polymer (CFRP)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent decades, research on polymer science and technology has successfully developed a variety of fiber-reinforced polymer composites focusing on current topics of interest. The performance of composite materials that can withstand extreme environments, such as space, the deep sea, and the polar regions beyond the laboratory, is dazzling. In particular, the discovery and application of composite materials that enable new growth engines such as e-mobility are highly practical and important. In this Special Issue, we discuss the state-of-the-art technologies and methods for these materials. We highlight new developments and applications in structural or functional materials and their composites. We welcome in-depth and comprehensive research into the physicochemical and mechanistic fundamentals relevant to this field.

Dr. Min Wook Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fiber-reinforced polymers
  • fiber composites
  • ceramic matrix composites
  • functional materials
  • micro/nano-fibers
  • matrix
  • filler
  • additive

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3276 KiB  
Article
Ultraviolet Irradiation Surface Treatment to Enhance the Bonding Strength of Polyamide-Based Carbon Fiber-Reinforced Thermoplastic Polymers
by Mun Young Hwang, Soon Ho Yoon and Minkook Kim
Polymers 2024, 16(20), 2864; https://doi.org/10.3390/polym16202864 - 10 Oct 2024
Cited by 1 | Viewed by 1449
Abstract
Adhesive bonding is a suitable joining method to satisfy the increasing industrial demand for carbon fiber-reinforced polymers without the need for a machining process. However, thermoplastic-based carbon fiber-reinforced polymers have small adhesive strength with structural thermoset adhesives. In this study, an ultraviolet irradiation [...] Read more.
Adhesive bonding is a suitable joining method to satisfy the increasing industrial demand for carbon fiber-reinforced polymers without the need for a machining process. However, thermoplastic-based carbon fiber-reinforced polymers have small adhesive strength with structural thermoset adhesives. In this study, an ultraviolet irradiation surface treatment was developed to improve the adhesive bonding strength for polyamide-based carbon fiber-reinforced polymer. The type of ultraviolet wavelength, irradiation distance and irradiation time were optimized. Surface treatment with simultaneous UV irradiation of 185 nm and 254 nm wavelength generated unbound N-H stretching that was capable of chemical bonding with epoxy adhesives through a photo-scission reaction of the amide bond of polyamide matrix. Therefore, ultraviolet irradiation treatment improved the wettability and functional groups of the polyamide-based carbon fiber-reinforced polymers for adhesive bonding. As a result, the adhesive strength of the polyamide-based carbon fiber-reinforced polymers was increased by more than 230%. Full article
Show Figures

Figure 1

14 pages, 7460 KiB  
Article
Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore–Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries
by Young-Gon Kim, Bo Gyeong Jeong, Bum Jin Park, Heejin Kim, Min Wook Lee and Seong Mu Jo
Polymers 2024, 16(13), 1810; https://doi.org/10.3390/polym16131810 - 26 Jun 2024
Cited by 1 | Viewed by 1736
Abstract
Porous silicon dioxide (SiO2)/poly(vinylidene fluoride) (PVdF), SiO2/PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO2 sol–gel/PVdF. The nanofibers of the SiO2/PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures [...] Read more.
Porous silicon dioxide (SiO2)/poly(vinylidene fluoride) (PVdF), SiO2/PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO2 sol–gel/PVdF. The nanofibers of the SiO2/PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO2 component. The thickness of the SiO2 skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO2 and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of >270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane. Full article
Show Figures

Figure 1

21 pages, 9904 KiB  
Article
Assessment of Environmental Impact on Glass-Fiber-Reinforced Polymer Pipes Mechanical and Thermal Properties
by Cătălina Călin, Alin Diniță, Gheorghe Brănoiu, Daniela Roxana Popovici, Maria Tănase, Elena-Emilia Sirbu, Alexandra-Ileana Portoacă and Sonia Mihai
Polymers 2024, 16(13), 1779; https://doi.org/10.3390/polym16131779 - 24 Jun 2024
Cited by 4 | Viewed by 2231
Abstract
Glass-fiber-reinforced polymer (GFRP) composites are widely used due to their high strength-to-weight ratio and corrosion resistance. However, their properties can degrade under different environmental conditions, affecting long-term reliability. This study examines the effects of temperature and chemical environments on GFRP pipes. Specimens were [...] Read more.
Glass-fiber-reinforced polymer (GFRP) composites are widely used due to their high strength-to-weight ratio and corrosion resistance. However, their properties can degrade under different environmental conditions, affecting long-term reliability. This study examines the effects of temperature and chemical environments on GFRP pipes. Specimens were exposed to salt water and alkaline solutions at 20 °C and 50 °C. Diffusion coefficients and tensile and flexural properties were measured. Advanced techniques (TGA, FT-IR, and XRD) showed a 54.73% crystallinity difference between samples at 20 °C/air and 50 °C/salt water. Elevated temperatures and alkaline conditions accelerated degradation, with diffusion coefficients 68.38% higher at 50 °C/salt water compared to at 20 °C/salt water. Flexural strength decreased by 47.65% and tensile strength by 13.89%, at 50 °C/alkaline compared to 20 °C/air. Temperature was identified as the primary factor affecting mechanical performance, while alkaline environments significantly influenced tensile and flexural modulus. These results underscore the importance of considering environmental factors for the durability of GFRP composites. Full article
Show Figures

Figure 1

Back to TopTop