Valorization of Biopolymer from Renewable Biomass

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 11450

Special Issue Editors


E-Mail Website
Guest Editor
Departamento de Química y Física Aplicadas, Universidad de León, León, Spain
Interests: proteins; protein-based materials; bioplastics; matrices; horticulture; soy; micronutrients; fertilization; slow-release fertilization; controlled-release fertilizers; biomaterials; scaffolds; tissue engineering; emulsions; composites

E-Mail Website
Guest Editor
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
Interests: biopolymers; food waste recovery; rheology; innovative processing technologies; functional foods; sustainability
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
Interests: biopolymers; bioplastics; by-products; colloids; emulsions; freeze-drying; gelation; hydrogels; nanomaterials; rheology; scaffolds; tissue engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The valorization of biopolymers derived from renewable biomass is a crucial area of research aimed at sustainable resource utilization and reducing the dependence on fossil fuels. Biopolymers, such as cellulose, starch, chitin, and proteins, are abundant in various biomass sources, including agricultural residues, forestry byproducts, and waste streams from the food processing industries. These biopolymers possess unique properties that make them promising candidates for the development of eco-friendly materials, including biodegradable plastics, films, coatings, and composites. Aiming to explore them, this Special Issue will focus on the recovery and valorization of renewable biomass rich in biopolymers in order to transform it into resources for the production of energy and new products, with original research reports, review articles, communications, and perspectives in all areas pertinent to this topic being welcomed.

Dr. Mercedes Jiménez-Rosado
Dr. Víctor Manuel Pérez Puyana
Prof. Dr. Alberto Romero García
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biodegradable
  • biopolymers
  • biomass
  • eco-friendly materials
  • renewable
  • sustainability
  • valorization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 2299 KiB  
Article
Life Cycle Assessment (LCA) of Bioplastics Production from Lignocellulosic Waste (Study Case: PLA and PHB)
by Lacrimioara Senila, Eniko Kovacs, Maria-Alexandra Resz, Marin Senila, Anca Becze and Cecilia Roman
Polymers 2024, 16(23), 3330; https://doi.org/10.3390/polym16233330 - 27 Nov 2024
Viewed by 962
Abstract
Life cycle assessment of a technology is the key to technological development in the context of sustainable development. Orchard waste has been identified as a potential source of bioplastics. The objective of this study was to conduct a life cycle assessment of two [...] Read more.
Life cycle assessment of a technology is the key to technological development in the context of sustainable development. Orchard waste has been identified as a potential source of bioplastics. The objective of this study was to conduct a life cycle assessment of two specific bioplastic materials, namely, L-polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB). Bioplastics, such as PLA acid and PHB, can be used as alternatives to conventional plastics due to their biodegradability and non-toxicity, both of which have the potential to replace conventional petroleum-based plastics. Polylactic acid was synthesized from orchard waste in a series of stages, including biomass processing, pretreatment for carbohydrate extraction, simultaneous saccharification and fermentation (SSF), and microwave polymerization. PHB, another biodegradable polymer, is produced by microorganisms through the fermentation of sugars obtained from the same biomass. Applied LCAs show that for PLA production, the stages having the greatest environmental impact are biomass processing, pretreatment, and the SSF process, and for PHB production, very energy-intensive stages significantly contributing to the environmental impacts are biomass processing and pretreatment stages. For both PLA and PHB, the initial stages of biomass processing and pretreatment are the most energy-intensive and significant contributors to CO2 emissions. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass)
Show Figures

Figure 1

14 pages, 2176 KiB  
Article
Extraction of Fungal Chitosan by Leveraging Pineapple Peel Substrate for Sustainable Biopolymer Production
by Delwin Davis, Mridul Umesh, Adhithya Sankar Santhosh, Sreehari Suresh, Sabarathinam Shanmugam and Timo Kikas
Polymers 2024, 16(17), 2455; https://doi.org/10.3390/polym16172455 - 29 Aug 2024
Viewed by 1111
Abstract
The cost-effective production of commercially important biopolymers, such as chitosan, has gained momentum in recent decades owing to its versatile material properties. The seasonal variability in the availability of crustacean waste and fish waste, routinely used for chitosan extraction, has triggered a focus [...] Read more.
The cost-effective production of commercially important biopolymers, such as chitosan, has gained momentum in recent decades owing to its versatile material properties. The seasonal variability in the availability of crustacean waste and fish waste, routinely used for chitosan extraction, has triggered a focus on fungal chitosan as a sustainable alternative. This study demonstrates a cost-effective strategy for cultivating an endophytic fungus isolated from Pichavaram mangrove soil in a pineapple peel-based medium for harvesting fungal biomass. Chitosan was extracted using alkali and acid treatment methods from various combinations of media. The highest chitosan yield (139 ± 0.25 mg/L) was obtained from the pineapple peel waste-derived medium supplemented with peptone. The extracted polymer was characterized by FTIR, XRD, DSC, and TGA analysis. The antioxidant activity of the fungal chitosan was evaluated using DPPH assay and showed an IC50 value of 0.22 mg/L. Subsequently, a transparent chitosan film was fabricated using the extracted fungal chitosan, and its biodegradability was assessed using a soil burial test for 50 days. Biodegradation tests revealed that, after 50 days, a degradation rate of 28.92 ± 0.75% (w/w) was recorded. Thus, this study emphasizes a cost-effective strategy for the production of biopolymers with significant antioxidant activity, which may have promising applications in food packaging if additional investigations are carried out in the future. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass)
Show Figures

Figure 1

12 pages, 3186 KiB  
Article
Extraction of Nanocellulose from the Residue of Sugarcane Bagasse Fiber for Anti-Staphylococcus aureus (S. aureus) Application
by Krairop Charoensopa, Kotchaporn Thangunpai, Peifu Kong, Toshiharu Enomae and Wat Ploysri
Polymers 2024, 16(11), 1612; https://doi.org/10.3390/polym16111612 - 6 Jun 2024
Cited by 1 | Viewed by 1631
Abstract
Nanocellulose contains a large number of hydroxyl groups that can be used to modify its surface due to its structure. Owing to its appealing features, such as high strength, great stiffness, and high surface area, nanocellulose is currently gaining popularity in research and [...] Read more.
Nanocellulose contains a large number of hydroxyl groups that can be used to modify its surface due to its structure. Owing to its appealing features, such as high strength, great stiffness, and high surface area, nanocellulose is currently gaining popularity in research and industry. The extraction of nanocellulose from the leftover bagasse fiber from sugarcane production by alkaline and acid treatment was successful in this study, with a production yield of 55.6%. The FTIR and XPS results demonstrated a difference in the functional and chemical composition of untreated sugarcane bagasse and extracted nanocellulose. SEM imaging was used to examined the size of the nanocellulose with ImageJ software v1.8.0. TGA, DTG, and XRD analyses were also performed to demonstrate the successful extraction of nanocellulose in terms of its morphology, thermal stability, and crystal structure before and after extraction. The anti-S. aureus activity of the extracted nanocellulose was discovered by using an OD600 test and a colony counting method, and an inhibitory rate of 53.12% was achieved. According to the results, nanocellulose produced from residual sugarcane bagasse could be employed as an antibacterial agent. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 1111 KiB  
Review
Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives
by Anand Narayanasamy, Sanjay K. S. Patel, Neha Singh, M. V. Rohit and Jung-Kul Lee
Polymers 2024, 16(15), 2227; https://doi.org/10.3390/polym16152227 - 5 Aug 2024
Cited by 2 | Viewed by 2719
Abstract
Biopolymers are highly desirable alternatives to petrochemical-based plastics owing to their biodegradable nature. The production of bioplastics, such as polyhydroxyalkanoates (PHAs), has been widely reported using various bacterial cultures with substrates ranging from pure to biowaste-derived sugars. However, large-scale production and economic feasibility [...] Read more.
Biopolymers are highly desirable alternatives to petrochemical-based plastics owing to their biodegradable nature. The production of bioplastics, such as polyhydroxyalkanoates (PHAs), has been widely reported using various bacterial cultures with substrates ranging from pure to biowaste-derived sugars. However, large-scale production and economic feasibility are major limiting factors. Now, using algal biomass for PHA production offers a potential solution to these challenges with a significant environmental benefit. Algae, with their unique ability to utilize carbon dioxide as a greenhouse gas (GHG) and wastewater as feed for growth, can produce value-added products in the process and, thereby, play a crucial role in promoting environmental sustainability. The sugar recovery efficiency from algal biomass is highly variable depending on pretreatment procedures due to inherent compositional variability among their cell walls. Additionally, the yields, composition, and properties of synthesized PHA vary significantly among various microbial PHA producers from algal-derived sugars. Therefore, the microalgal biomass pretreatments and synthesis of PHA copolymers still require considerable investigation to develop an efficient commercial-scale process. This review provides an overview of the microbial potential for PHA production from algal biomass and discusses strategies to enhance PHA production and its properties, focusing on managing GHGs and promoting a sustainable future. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass)
Show Figures

Figure 1

28 pages, 12145 KiB  
Review
Eco-Friendly and High-Performance Bio-Polyurethane Adhesives from Vegetable Oils: A Review
by Sena Maulana, Eko Setio Wibowo, Efri Mardawati, Apri Heri Iswanto, Antonios Papadopoulos and Muhammad Adly Rahandi Lubis
Polymers 2024, 16(11), 1613; https://doi.org/10.3390/polym16111613 - 6 Jun 2024
Cited by 1 | Viewed by 4562
Abstract
Current petrochemical-based adhesives adversely affect the environment through substantial volatile organic compound (VOC) emissions during production, contributing to air pollution and climate change. In contrast, vegetable oils extracted from bio-resources provide a compelling alternative owing to their renewability, abundance, and compatibility with adhesive [...] Read more.
Current petrochemical-based adhesives adversely affect the environment through substantial volatile organic compound (VOC) emissions during production, contributing to air pollution and climate change. In contrast, vegetable oils extracted from bio-resources provide a compelling alternative owing to their renewability, abundance, and compatibility with adhesive formulation chemistry. This review aimed to critically examine and synthesize the existing scholarly literature on environmentally friendly, sustainable, and high-performance polyurethane adhesives (PUAs) developed from vegetable oils. The use of PUAs derived from vegetable oils promises to provide a long-term replacement while simultaneously maintaining or improving adhesive properties. This quality renders these adhesives appropriate for widespread use in various sectors, including construction, automotive manufacturing, packaging, textile, and footwear industries. This review intended to perform a comprehensive assessment and integration of the existing research, thereby identifying the raw materials, strengths, weaknesses, and gaps in knowledge concerning vegetable oil-based PUAs. In doing so, it responded to these gaps and proposes potential avenues for future research. Therefore, this review accomplishes more than merely evaluating the existing research; it fosters the advancement of greener PUA technologies by identifying areas for improvement and innovation towards more sustainable industrial practices by showcasing vegetable oil-based PUAs as viable, high-performance alternatives to their petroleum-based counterparts. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass)
Show Figures

Figure 1

Back to TopTop