Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives
Abstract
:1. Introduction
2. Algal Biomass and Their Valorization Approaches
3. Production of Polyhydroxyalkanoates from Algal-Biomass-Derived Sugars
4. Limitations and Challenges in Microbial Production of Polyhydroxyalkanoates from Algal Biomass
5. Mechanical and Physiochemical Properties of the Microbially Synthesized PHAs from Algal Biomass
6. Genetic Engineering Approaches
7. Biotechnological Applications of Polyhydroxyalkanoates
8. Perspectives and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y.X. Biobased polymers with performance advantaged properties. Nat. Rev. Mater. 2021, 7, 83–103. [Google Scholar] [CrossRef]
- Broda, M.; Yelle, D.J.; Serwanska-Leja, K. Biodegradable polymers in veterinary medicine—A review. Molecules 2024, 29, 883. [Google Scholar] [CrossRef]
- Kalia, V.C.; Patel, S.K.S.; Lee, J.-K. Exploiting polyhydroxyalkanoates for biomedical applications. Polymers 2023, 15, 1937. [Google Scholar] [CrossRef]
- Kalia, V.C.; Patel, S.K.S.; Karthikeyan, K.K.; Jeya, M.; Kim, I.-W.; Lee, J.-K. Manipulating microbial cell morphology for the sustainable production of biopolymers. Polymers 2024, 16, 410. [Google Scholar] [CrossRef]
- Anburajan, P.; Kumar, A.N.; Sabapathy, P.C.; Kim, G.B.; Cayetano, R.D.; Yoon, J.J.; Kumar, G.; Kim, S.H. Polyhydroxy butyrate production by Acinetobacter junii BP25, Aeromonas hydrophila ATCC 7966, and their co-culture using a feast and famine strategy. Bioresour. Technol. 2019, 293, 122062. [Google Scholar] [CrossRef]
- Mannina, G.; Presti, D.; Montiel-Jarillo, G.; Suárez-Ojeda, M.E. Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour. Technol. 2019, 282, 361–369. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Z.; Wen, Q.; Ji, Y.; Wu, Z.; Lee, D.J. Toward flexible regulation of polyhydroxyalkanoate composition based on substrate feeding strategy: Insights into microbial community and metabolic features. Bioresour. Technol. 2020, 296, 122369. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Kumar, P.; Singh, S.; Lee, J.K.; Kalia, V.C. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour. Technol. 2015, 176, 136–141. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Das, D.; Kim, S.C.; Cho, B.-K.; Kalia, V.C.; Lee, J.-K. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew. Sustain. Energy Rev. 2021, 150, 111491. [Google Scholar] [CrossRef]
- Singh, M.; Patel, S.K.S.; Kalia, V.C. Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb. Cell Fact. 2009, 8, 38. [Google Scholar] [CrossRef]
- Kumar, P.; Patel, S.K.S.; Lee, J.-K.; Kalia, V.C. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 2013, 31, 1543–1561. [Google Scholar] [CrossRef]
- Patil, T.D.; Ghosh, S.; Agarwal, A.; Patel, S.K.S.; Tripathi, A.D.; Mahato, D.K.; Kumar, P.; Slama, P.; Pavlik, A.; Haque, S. Production, optimization, scale up and characterization of polyhydoxyalkanoates copolymers utilizing dairy processing waste. Sci. Rep. 2024, 14, 1620. [Google Scholar]
- Arora, Y.; Sharma, S.; Sharma, V. Microalgae in bioplastic production: A comprehensive review. Arab. J. Sci. Eng. 2023, 48, 7225–7241. [Google Scholar] [CrossRef]
- Abd El-Malek, F.; Rofeal, M.; Zabed, H.M.; Nizami, A.-S.; Rehan, M.; Qi, X. Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges and future outlook. Fuel 2022, 311, 122612. [Google Scholar] [CrossRef]
- Agarwal, A.; Rizwana; Tripathi, A.D.; Kumar, T.; Sharma, K.P.; Patel, S.K.S. Nutritional and functional new perspectives and potential health benefits of quinoa and chia seeds. Antioxidants 2023, 12, 1413. [Google Scholar] [CrossRef]
- Ritika; Rizwana; Shukla, S.; Sondhi, A.; Tripathi, A.D.; Lee, J.-K.; Patel, S.K.S.; Agarwal, A. Valorisation of fruit waste for harnessing the bioactive compounds and its therapeutic application. Trends Food. Sci. Technol. 2024, 144, 104302. [Google Scholar] [CrossRef]
- Bhushan, S.; Rana, M.S.; Bhandari, M.; Sharma, A.K.; Simsek, H.; Prajapati, S.K. Enzymatic pretreatment of algal biomass has different optimal conditions for biogas and bioethanol routes. Chemosphere 2021, 284, 131264. [Google Scholar] [CrossRef]
- Abusweireh, R.S.; Rajamohan, N.; Sonne, C.; Vasseghian, Y. Algae biogas production focusing on operating conditions and conversion mechanisms—A review. Heliyon 2023, 9, e17757. [Google Scholar] [CrossRef]
- Bader, A.N.; Sanchez Rizza, L.; Consolo, V.F.; Curatti, L. Bioprospecting for fungal enzymes for applications in microalgal biomass biorefineries. Appl. Microbiol. Biotechnol. 2023, 107, 591–607. [Google Scholar] [CrossRef]
- de Sousa Junior, R.R.; Cezario, F.E.M.; Antonino, L.D.; dos Santos, D.J.; Lackner, M. Characterization of poly(3-hydroxybutyrate) (P3HB) from alternative, scalable (Waste) feedstocks. Bioengineering 2023, 10, 1382. [Google Scholar] [CrossRef]
- Mai, J.; Pratt, S.; Laycock, B.; Chan, C.M. Synthesis and characterisation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-β-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) multi-block copolymers produced using diisocyanate chemistry. Polymers 2023, 15, 3257. [Google Scholar] [CrossRef]
- Dang, B.-T.; Bui, X.-T.; Tran, D.P.H.; Ngo, H.H.; Nghiem, L.D.; Hoang, T.-K.-D.; Nguyen, P.-T.; Nguyen, H.H.; Vo, T.-K.-Q.; Lin, C.; et al. Current application of algae derivatives for bioplastic production: A review. Bioresour. Technol. 2022, 347, 126698. [Google Scholar] [CrossRef]
- Tan, F.H.P.; Nadir, N.; Sudesh, K. Microalgal biomass as feedstock for bacterial production of PHA: Advances and future prospects. Front. Bioeng. Biotechnol. 2022, 10, 879476. [Google Scholar] [CrossRef]
- Okolie, O.; Kumar, A.; Edwards, C.; Lawton, L.A.; Oke, A.; McDonald, S.; Thakur, V.K.; Njuguna, J. Bio-based sustainable polymers and materials: From processing to biodegradation. J. Compos. Sci. 2023, 7, 213. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Lee, J.-K.; Kalia, V.C. Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J. Microbiol. 2016, 56, 293–300. [Google Scholar] [CrossRef]
- Radivojevic, J.; Skaro, S.; Senerovic, L.; Vasiljevic, B.; Guzik, M.; Kenny, S.T.; Maslak, V.; Nikodinovic-Runic, J.; O’Connor, K.E. Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. Appl. Microbiol. Biotechnol. 2016, 100, 161–172. [Google Scholar] [CrossRef]
- Righetti, G.I.C.; Faedi, F.; Famulari, A. Embracing sustainability: The World of bio-based polymers in a mini review. Polymers 2024, 16, 950. [Google Scholar] [CrossRef]
- Agarwalla, A.; Komandur, J.; Mohanty, K. Current trends in the pretreatment of microalgal biomass for efficient and enhanced bioenergy production. Bioresour. Technol. 2023, 369, 128330. [Google Scholar] [CrossRef]
- Hosseini, N.S.; Shang, H.; Scott, J.A. Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renew. Sustain. Energy Rev. 2018, 92, 458–469. [Google Scholar] [CrossRef]
- Chia, S.R.; Chew, K.W.; Leong, H.Y.; Ho, S.-H.; Munawaroh, H.S.H.; Show, P.L. CO2 mitigation and phycoremediation of industrial flue gas and wastewater via microalgae-bacteria consortium: Possibilities and challenges. Chem. Eng. J. 2021, 425, 131436. [Google Scholar] [CrossRef]
- Mehariya, S.; Plohn, M.; Jablonski, P.; Stagge, S.; Jonsson, L.J.; Funk, C. Biopolymer production from biomass produced by Nordic microalgae grown in wastewater. Bioresour. Technol. 2023, 376, 128901. [Google Scholar] [CrossRef]
- Romero-Vargas, A.; Cala, K.; Blandino, A.; Díaz, A.B. Bioconversion of the invasive seaweed Rugulopteryx okamurae into enzymes and polyhydroxyalkanoates. Algal Res. 2024, 81, 103587. [Google Scholar] [CrossRef]
- Kumar, A.N.; Yoon, J.-J.; Kumar, G.; Kim, S.-H. Biotechnological valorization of algal biomass: An overview. Syst. Microbiol. Biomanufact. 2021, 1, 131–141. [Google Scholar] [CrossRef]
- Estevam, R.; Gonçalves, R.F.; Oss, R.N.; Sampaio, I.C.F.; Cassini, S.T. Effects of different thermal and thermochemical pretreatments on the anaerobic digestion of algal biomass cultivated in urban wastewater and collected with and without chemical coagulants. Algal Res. 2024, 78, 103417. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Huang, C.-Y.; Leong, Y.K.; Yen, H.-W.; Lee, D.-J.; Chang, J.-S. Utilizing microalgal hydrolysate from dairy wastewater-grown Chlorella sorokiniana SU-1 as sustainable feedstock for polyhydroxybutyrate and β-carotene production by engineered Rhodotorula glutinis #100-29. Bioresour. Technol. 2023, 384, 129277. [Google Scholar]
- Bondar, M.; Pedro, F.; Oliveira, M.C.; da Fonseca, M.M.R.; Cesário, M.T. Red algae industrial residues as a sustainable carbon platform for the coproduction of poly-3-hydroxybutyrate and gluconic acid by Halomonas boliviensis. Front. Bioeng. Biotechnol. 2022, 10, 934432. [Google Scholar] [CrossRef] [PubMed]
- Alkotaini, B.; Koo, H.; Kim, B.S. Production of polyhydroxyalkanoates by batch and fed-batch cultivations of Bacillus megaterium from acid-treated red algae. Korean J. Chem. Eng. 2016, 33, 1669–1673. [Google Scholar] [CrossRef]
- Khomlaem, C.; Aloui, H.; Kim, B.S. Biosynthesis of polyhydroxyalkanoates from defatted Chlorella biomass as an inexpensive substrate. Appl. Sci. 2021, 11, 1094. [Google Scholar] [CrossRef]
- Muhammad, M.; Aloui, H.; Khomlaem, C.; Hou, C.T.; Kim, B.S. Production of polyhydroxyalkanoates and carotenoids through cultivation of different bacterial strains using brown algae hydrolysate as a carbon source. Biocatal. Agric. Biotechnol. 2020, 30, 101852. [Google Scholar] [CrossRef]
- Dubey, S.; Mishra, S. Efficient production of polyhydroxyalkanoate through halophilic bacteria utilizing algal biodiesel waste residue. Front. Bioeng. Biotechnol. 2021, 9, 624859. [Google Scholar] [CrossRef]
- Abd El-Malek, F.; Rofeal, M.; Farag, A.; Omar, S.; Khairy, H. Polyhydroxyalkanoate nanoparticles produced by marine bacteria cultivated on cost effective mediterranean algal hydrolysate media. J. Biotechnol. 2021, 328, 95–105. [Google Scholar] [CrossRef]
- Khomlaem, C.; Aloui, H.; Deshmukh, A.R.; Yun, J.H.; Kim, H.S.; Napathorn, S.C.; Kim, B.S. Defatted Chlorella biomass as a renewable carbon source for polyhydroxyalkanoates and carotenoids co-production. Algal Res. 2020, 51, 102068. [Google Scholar] [CrossRef]
- Kalia, V.C.; Patel, S.K.S.; Shanmugam, R.; Lee, J.-K. Polyhydroxyalkanoates: Trends and advances towards biotechnological applications. Bioresour. Technol. 2021, 326, 124737. [Google Scholar] [CrossRef]
- Leandro, T.; Oliveira, M.C.; da Fonseca, M.M.R.; Cesário, M.T. Co-production of poly(3-hydroxybutyrate) and gluconic acid from glucose by Halomonas elongata. Bioengineering 2023, 10, 643. [Google Scholar] [CrossRef]
- Vicente, D.; Proença, D.N.; Morais, P.V. The role of bacterial polyhydroalkanoate (PHA) in a sustainable future: A review on the biological diversity. Int. J. Environ. Res. Public Health 2023, 20, 2959. [Google Scholar] [CrossRef] [PubMed]
- de Mello, A.F.M.; Vandenberghe, L.P.D.S.; Machado, C.M.B.; Brehmer, M.S.; de Oliveira, P.Z.; Binod, P.; Sindhu, R.; Soccol, C.R. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. Bioresour. Technol. 2024, 393, 130078. [Google Scholar] [CrossRef] [PubMed]
- Atarés, L.; Chiralt, A.; González-Martínez, C.; Vargas, M. Production of polyhydroxyalkanoates for biodegradable food packaging applications using Haloferax mediterranei and agrifood wastes. Foods 2024, 13, 950. [Google Scholar] [CrossRef] [PubMed]
- Taherzadeh, M.; Parameswaran, B.; Karimi, K.; de Souza Vandenberghe, L.P.; Kumar Patel, A. Recent advances on pretreatment of lignocellulosic and algal biomass. Bioresour. Technol. 2020, 316, 123957. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Chon, K.; Kim, K.-Y.; Le, G.T.H.; Nguyen, H.Y.; Le, T.T.Q.; Nguyen, H.T.T.; Jae, M.-R.; Ahmad, I.; Oh, S.-E.; et al. Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy. Bioresour. Technol. 2023, 369, 128380. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, J.; Wu, B.; Liu, J.; Xu, X.; Wu, W.; Zhuang, J.; Li, H.; Huang, T. Enhanced VFAs production from microalgal hydrolytic acidification with ultrasonic-alkali pretreatment. Algal Res. 2023, 71, 103056. [Google Scholar] [CrossRef]
- Avila, R.; Carrero, E.; Vicent, T.; Blánquez, P. Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae. Waste Manag. 2021, 124, 254–263. [Google Scholar] [CrossRef]
- de Oliveira, M.C.; Bassin, I.D.; Cammarota, M.C. Microalgae and Cyanobacteria biomass pretreatment methods: A comparative analysis of chemical and thermochemical pretreatment methods aimed at methane production. Fermentation 2022, 8, 497. [Google Scholar] [CrossRef]
- Bhushan, S.; Jayakrishnan, U.; Shree, B.; Bhatt, P.; Eshkabilov, S.; Simsek, H. Biological pretreatment for algal biomass feedstock for biofuel production. J. Environ. Chem. Eng. 2023, 11, 109870. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, Z.; Shahadat Hossain, M.; Maurya, R.; Yang, Y.; Singh, V.; Kumar, D.; Salama, E.; Sun, X.; Sindhu, R.; et al. Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion. Bioresour. Technol. 2023, 367, 128281. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-M.; Ren, L.-J.; Zhao, Q.-Y.; Ji, X.-J.; Huang, H. Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnol. Biofuels 2018, 11, 272. [Google Scholar] [CrossRef]
- Madadi, R.; Maljaee, H.; Serafim, L.S.; Ventura, S.P. Microalgae as contributors to produce biopolymers. Mar. Drugs 2021, 19, 466. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.K.; Ahuja, V.; Chandel, N.; Gurav, R.; Bhatia, R.K.; Govarthanan, M.; Tyagi, V.K.; Kumar, V.; Pugazendhi, A.; Banu, R.J.; et al. Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes. Bioresour. Technol. 2022, 358, 127437. [Google Scholar]
- Sirohi, R.; Ummalyma, S.B.; Sagar, N.A.; Sharma, P.; Awasthi, M.K.; Badgujar, P.C.; Madhavan, A.; Rajasekharan, R.; Sindhu, R.; Sim, S.J.; et al. Strategies and advances in the pretreatment of microalgal biomass. J. Biotechnol. 2021, 341, 63–75. [Google Scholar] [CrossRef]
- Priya, A.; Naseem, S.; Pandey, D.; Bhowmick, A.; Attrah, M.; Dutta, K.; Rene, E.R.; Suman, S.K.; Daverey, A. Innovative strategies in algal biomass pretreatment for biohydrogen production. Bioresour. Technol. 2023, 369, 128446. [Google Scholar] [CrossRef]
- Mehariya, S.; Das, P.; Thaher, M.I.; Quadir, M.A.; Khan, S.; Sayadi, S.; Hawari, A.H.; Verma, P.; Bhatia, S.K.; Karthikeyan, O.P.; et al. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. Chemosphere 2024, 351, 141245. [Google Scholar] [CrossRef]
- Udaypal, X.; Goswami, R.K.; Mehariya, S.; Verma, P. Advances in microalgae-based carbon sequestration: Current status and future perspectives. Environ. Res. 2024, 249, 118397. [Google Scholar] [CrossRef]
- Sankaran, R.; Cruz, R.A.P.; Pakalapati, H.; Show, P.L.; Ling, T.C.; Chen, W.-H. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresour. Technol. 2020, 298, 122476. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Badawi, M.; Mohanakrishna, G.; Aminabhavi, T.M. Valorization of micro-algae biomass for the development of green biorefinery: Perspectives on techno-economic analysis and the way towards sustainability. Chem. Eng. J. 2023, 453, 139754. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Kim, I.-W.; Lee, J.-K. Coriolus versicolor laccase-based inorganic protein hybrid synthesis for application in biomass saccharification to enhance biological production of hydrogen and ethanol. Enzyme Microb. Technol. 2023, 170, 110301. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Karuppanan, K.K.; Padhi, D.K.; Ranganathan, S.; Paramanantham, P.; Lee, J.-K. Trametes versicolor laccase-based magnetic inorganic-protein hybrid nanobiocatalyst for efficient decolorization of dyes in the presence of inhibitors. Materials 2024, 17, 1790. [Google Scholar] [CrossRef]
- Wang, H.; Qin, L.; Qi, W.; Elshobary, M.; Wang, W.; Feng, P.; Wang, Z.; Zhu, S. Harmony in detoxification: Microalgae unleashing the potential of lignocellulosic pretreatment wastewater for resource utilization. Sci. Total Environ. 2024, 927, 171888. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Cheng, C.-L.; Ho, S.-H.; Chang, J.-S.; Ren, N. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour. Technol. 2016, 200, 557–564. [Google Scholar] [CrossRef]
- Castro, Y.A.; Ellis, J.T.; Miller, C.D.; Sims, R.C. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl. Energy 2015, 140, 14–19. [Google Scholar] [CrossRef]
- Romero-Vargas, A.; Muñoz, I.; Marzo, C.; Díaz, A.B.; Romero-García, L.I.; Blandino, A. Ultrasound pretreatment to enhance the enzymatic hydrolysis of Dictyota dichotoma for sugars production. Algal Res. 2023, 71, 103083. [Google Scholar] [CrossRef]
- Ngamsirisomsakul, M.; Reungsang, A.; Liao, Q.; Kongkeitkajorn, M.B. Enhanced bio-ethanol production from Chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis. Renew. Energy 2019, 141, 482–492. [Google Scholar] [CrossRef]
- Yuan, T.; Li, X.; Xiao, S.; Guo, Y.; Zhou, W.; Xu, J.; Yuan, Z. Microalgae pretreatment with liquid hot water to enhance enzymatic hydrolysis efficiency. Bioresour. Technol. 2016, 220, 530–536. [Google Scholar] [CrossRef]
- Kumar, N.; Chatterjee, S.; Hemalatha, M.; Althuri, A.; Min, B.; Kim, S.-Y.; Mohan, S.V. Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresour. Technol. 2020, 296, 122315. [Google Scholar]
- Romero-Vargas, A.; Gallé, A.; Blandino, A.; Romero-García, L.I. Use of macroalgal waste from the carrageenan industry as feedstock for the production of polyhydroxybutyrate. Biofuels Bioprod. Bioref. 2023, 17, 1290–1302. [Google Scholar] [CrossRef]
- AlMomani, F.; Shawaqfah, M.; Alsarayreh, M.; Khraisheh, M.; Hameed, B.H.; Naqvi, S.R.; Berkani, M.; Varjani, S. Developing pretreatment methods to promote the production of biopolymer and bioethanol from residual algal biomass (RAB). Algal Res. 2022, 68, 102895. [Google Scholar] [CrossRef]
- Constantino, A.; Rodrigues, B.; Leon, R.; Barros, R.; Raposo, S. Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Res. 2021, 56, 102329. [Google Scholar] [CrossRef]
- Chia, W.Y.; Tang, D.Y.Y.; Khoo, K.S.; Lup, A.N.K.; Chew, K.W. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environ. Sci. Ecotechnol. 2020, 4, 100065. [Google Scholar] [CrossRef]
- Dave, N.; Varadavenkatesan, T.; Singh, R.S.; Giri, B.S.; Selvaraj, R.; Vinayagam, R. Evaluation of seasonal variation and the optimization of reducing sugar extraction from Ulva prolifera biomass using thermochemical method. Environ. Sci. Pollut. Res. Int. 2021, 28, 58857–58871. [Google Scholar] [CrossRef] [PubMed]
- Gnaim, R.; Polikovsky, M.; Unis, R.; Sheviryov, J.; Gozin, M.; Golberg, A. Marine bacteria associated with the green seaweed Ulva sp. for the production of polyhydroxyalkanoates. Bioresour. Technol. 2021, 328, 124815. [Google Scholar] [CrossRef]
- Morales-Contreras, B.E.; Florez-Fernandez, N.; Torres, M.D.; Dominguez, H.; Rodríguez-Jasso, R.M.; Ruiz, H.A. Hydrothermal systems to obtain high value-added compounds from macroalgae for bioeconomy and biorefineries. Bioresour. Technol. 2022, 343, 126017. [Google Scholar] [CrossRef]
- Marangon, B.B.; Magalhães, I.B.; Pereira, A.S.A.P.; Silva, T.A.; Gama, R.C.N.; Ferreira, J.; Castro, J.S.; Assis, L.R.; Lorentz, J.F.; Calijuri, M.L. Emerging microalgae-based biofuels: Technology, life-cycle and scale-up. Chemosphere 2023, 326, 138447. [Google Scholar] [CrossRef]
- García-Chumillas, S.; Guerrero-Murcia, T.; Nicolás-Liza, M.; Monzó, F.; Simica, A.; Simó-Cabrera, L.; Martínez-Espinosa, R.M. PHBV cycle of life using waste as a starting point: From production to recyclability. Front. Mater. 2024, 11, 1405483. [Google Scholar] [CrossRef]
- Kannah, R.Y.; Kavitha, S.; Karthikeyan, O.P.; Rene, E.R.; Kumar, G.; Banu, J.R. A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. Bioresour. Technol. 2021, 332, 125055. [Google Scholar]
- Kargupta, W.; Kafle, S.R.; Lee, Y.; Kim, B.S. One-pot treatment of Saccharophagus degradans for polyhydroxyalkanoate production from brown seaweed. Bioresour. Technol. 2023, 385, 129392. [Google Scholar] [CrossRef] [PubMed]
- Kartik, A.; Akhil, D.; Lakshmi, D.; Gopinath, K.P.; Arun, J.; Sivaramakrishnan, R.; Pugazhendhi, A. A critical review on production of biopolymers from algae biomass and their applications. Bioresour. Technol. 2021, 329, 124868. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, M.P.; Maurya, R.; Mehariya, S.; Karthikeyan, O.P.; Dharani, G.; Arunkumar, K.; Pereda, S.V.; Hernández-González, M.C.; Buschmann, A.H.; Pugazhendhi, A. Feasibility of bioplastic production using micro- and macroalgae—A review. Environ. Res. 2024, 240, 117465. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.K.; Hwang, J.H.; Oh, S.J.; Kim, H.J.; Shin, N.; Choi, T.-R.; Kim, H.-J.; Jeon, J.-M.; Yoon, J.-J.; Yang, Y.-H. Macroalgae as a source of sugar and detoxifier biochar for polyhydroxyalkanoates production by Halomonas sp. YLGW01 under the unsterile condition. Bioresour. Technol. 2023, 384, 129290. [Google Scholar] [CrossRef]
- Ghosh, S.; Gnaim, R.; Greiserman, S.; Fadeev, L.; Gozin, M.; Golberg, A. Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresour. Technol. 2019, 271, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Senko, O.; Stepanov, N.; Maslova, O.; Efremenko, E. Transformation of enzymatic hydrolysates of Chlorella–fungus mixed biomass into poly(hydroxyalkanoates). Catalysts 2023, 13, 118. [Google Scholar] [CrossRef]
- Azizi, N.; Najafpour, G.; Younesi, H. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int. J. Biol. Macromol. 2017, 101, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Coons, J.; Yeager, C.; Halley, P.; Chemodanov, A.; Belgorodsky, B.; Gozin, M.; Chen, G.-Q.; Golberg, A. Halophyte biorefinery for polyhydroxyalkanoates production from Ulva sp. hydrolysate with Haloferax mediterranei in pneumatically agitated bioreactors and ultrasound harvesting. Bioresour. Technol. 2022, 344, 125964. [Google Scholar] [CrossRef]
- Ghosh, S.; Greiserman, S.; Chemodanov, A.; Slegers, P.M.; Belgorodsky, B.; Epstein, M.; Kribus, A.; Gozin, M.; Chen, G.-Q.; Golberg, A. Polyhydroxyalkanoates and biochar from green macroalgal Ulva sp. biomass subcritical hydrolysates: Process optimization and a priori economic and greenhouse emissions break-even analysis. Sci. Total Environ. 2021, 770, 145281. [Google Scholar] [CrossRef] [PubMed]
- Steinbruch, E.; Drabik, D.; Epstein, M.; Ghosh, S.; Prabhu, M.S.; Gozin, M.; Kribus, A.; Golberg, A. Hydrothermal processing of a green seaweed Ulva sp. for the production of monosaccharides, polyhydroxyalkanoates, and hydrochar. Bioresour. Technol. 2020, 318, 124263. [Google Scholar] [CrossRef] [PubMed]
- Raju, N.N.; Sanaranarayanan, M.; Bharathiraja, B. Production of polyhydroxybutyrate (PHB), a biodegradable polymer from seaweed biomass using novel bacterial isolates. J. Mol. Struct. 2024, 1303, 137511. [Google Scholar] [CrossRef]
- Jeong, D.W.; Hyeon, J.E.; Lee, M.E.; Ko, Y.J.; Kim, M.; Han, S.O. Efficient utilization of brown algae for the production of Polyhydroxybutyrate (PHB) by using an enzyme complex immobilized on Ralstonia eutropha. Int. J. Biol. Macromol. 2021, 189, 819–825. [Google Scholar] [CrossRef]
- Obulisamy, P.K.; Mehariya, S. Polyhydroxyalkanoates from extremophiles: A review. Bioresour. Technol. 2021, 325, 124653. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, M.P.; Peter, D.M.; Dharani, G. Studies on the development and characterization of bioplastic film from the red seaweed (Kappaphycus alvarezii). Environ. Sci. Pollut. Res. Int. 2021, 28, 33899–33913. [Google Scholar] [CrossRef]
- Rahman, A.; Linton, E.; Hatch, A.D.; Sims, R.C.; Miller, C.D. Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J. Biol. Eng. 2013, 7, 24. [Google Scholar] [CrossRef]
- Sasaki, Y.; Yoshikuni, Y. Metabolic engineering for valorization of macroalgae biomass. Metab. Eng. 2022, 71, 42–61. [Google Scholar] [CrossRef]
- Tennakoon, P.; Chandika, P.; Yi, M.; Jung, W.-K. Marine-derived biopolymers as potential bioplastics, an eco-friendly alternative. iScience 2024, 26, 106404. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, M.; Song, L.; Yu, D.; Zhou, S.; Li, Y.; Li, H.; Han, X. Polyhydroxybutyrate production by recombinant Escherichia coli based on genes related to synthesis pathway of PHB from Massilia sp. UMI-21. Microb. Cell Fact. 2023, 22, 129. [Google Scholar] [CrossRef]
- Sathish, A.; Glaittli, K.; Sims, R.C.; Miller, C.D. Algae biomass based media for poly(3-hydroxybutyrate) (PHB) production by Escherichia coli. J. Polym. Environ. 2014, 22, 272–277. [Google Scholar] [CrossRef]
- Rossi, M.M.; Alfano, S.; Amanat, N.; Andreini, F.; Lorini, L.; Martinelli, A.; Petrangeli Papini, M. A Polyhydroxybutyrate (PHB)-biochar reactor for the adsorption and biodegradation of trichloroethylene: Design and startup phase. Bioengineering 2022, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Tuzen, M.; Hazer, B.; Wahba, H.; Saleh, T.A. Synthesis of poly (3-hydroxy butyrate)-g-poly (ricinoleic acid)-Ag nanocomposite for adsorption of methyl blue with multivariate optimization. J. Mol. Liquids 2024, 399, 124369. [Google Scholar] [CrossRef]
- Hungund, B.S.; Umloti, S.G.; Upadhyaya, K.P.; Manjanna, J.; Yallappa, S.; Ayachit, N.H. Development and characterization of polyhydroxybutyrate biocomposites and their application in the removal of heavy metals. Mater. Today Proc. 2018, 5, 21023–21029. [Google Scholar] [CrossRef]
- Sharabati, M.A.; Abokwiek, R.; Al-Othman, A.; Tawalbeh, M.; Karaman, C.; Orooji, Y.; Karimi, F. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. Environ. Res. 2021, 202, 111694. [Google Scholar] [CrossRef]
- Tuzen, M.; Sahiner, S.; Hazer, B. Solid phase extraction of lead, cadmium and zinc on biodegradable polyhydroxybutyrate diethanol amine (PHB-DEA) polymer and their determination in water and food samples. Food Chem. 2016, 210, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Longé, L.F.; Michely, L.; Gallos, A.; Rios De Anda, A.; Vahabi, H.; Renard, E.; Latroche, M.; Allais, F.; Langlois, V. Improved processability and antioxidant behavior of poly(3-hydroxybutyrate) in presence of ferulic acid-based additives. Bioengineering 2022, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Mohammadalipour, M.; Behzad, T.; Karbasi, S.; Mohammadalipour, Z. Optimization and characterization of polyhydroxybutyrate/lignin electro-spun scaffolds for tissue engineering applications. Int. J. Biol. Macromol. 2022, 218, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Cabeza de Vaca, M.; Ramírez-Bernabé, M.R.; Barrado, D.T.; Pimienta, J.R.; Delgado-Adámez, J. Application of antioxidant poly-lactic acid/polyhydroxybutyrate (PLA/PHB) films with rice bran extract for the preservation of fresh pork meat. Foods 2024, 13, 972. [Google Scholar] [CrossRef]
- Etxabide, A.; Kilmartin, P.A.; Guerrero, P.; de la Caba, K.; Hooks, D.O.; West, M.; Singh, T. Polyhydroxybutyrate (PHB) produced from red grape pomace: Effect of purification processes on structural, thermal and antioxidant properties. Int. J. Biol. Macromol. 2022, 217, 449–456. [Google Scholar] [CrossRef]
- Adelmalek, F.; Rofeal, M.; Pietrasik, J.; Stainbuchel, A. Novel biodegradable nanoparticulate chain-end functionalized polyhydroxybutyrate−caffeic acid with multi functionalities for active food coatings. ACS Sustain. Chem. Eng. 2023, 11, 7123–7135. [Google Scholar] [CrossRef]
- Ferri, M.; Papchenko, K.; Esposti, M.D.; Tondi, G.; Grazia, M.; Morselli, D.; Fabbri, P. Fully biobased polyhydroxyalkanoate/tannin films as multifunctional materials for smart food packaging applications. ACS Appl. Mater. Interfaces 2023, 15, 28594–28605. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Alibabaie, A.; Saberi, R.; Esmaeili, M.; Semnani, D.; Karbasi, S. Evaluation of the effects of zein incorporation on physical, mechanical, and biological properties of polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications. Int. J. Biol. Macromol. 2023, 253, 126843. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.; Bains, O.; Mittal, M.; Kamal, R.; Aggarwal, N.K.; Arora, S. Multifunctional chromone-incorporated poly(hydroxybutyrate) luminescent film for active and intelligent food packaging. Int. J. Biol. Macromol. 2023, 246, 125625. [Google Scholar] [CrossRef] [PubMed]
- Paxinou, A.; Marcello, E.; Vecchiato, V.; Erman, L.; Wright, E.; Noble, B.; McCormick, A.; Basnett, P. Dual production of polyhydroxyalkanoates and antibacterial/antiviral gold nanoparticles. Front. Nanotechnol. 2023, 5, 1243056. [Google Scholar] [CrossRef]
- Pandit, A.; Kumar, K.D.; Kumar, R. In vitro degradation and antibacterial activity of bacterial cellulose deposited flax fabric reinforced with polylactic acid and polyhydroxybutyrate. Int. J. Biol. Macromol. 2024, 266, 131199. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, H.; Xu, D.; Ma, Y.; Tut, T.A.; Ulag, S.; Pinar, O.; Kazan, D.; Guncu, M.M.; Sahin, A.; Wei, H.; et al. A new strategy for the treatment of middle ear infection using ciprofloxacin/amoxicillin-loaded ethyl cellulose/polyhydroxybutyrate nanofibers. Int. J. Biol. Macromol. 2024, 269, 131794. [Google Scholar] [CrossRef]
- Salahuddin, N.; Gaber, M.; Mousa, M.; Elfiky, M. Dopamine/Artesunate loaded polyhydroxybutyrate-g-cellulose- magnetite zinc oxide core shell nanocomposites: Synergistic antimicrobial and anticancer efficacy. Int. J. Biol. Macromol. 2023, 248, 125348. [Google Scholar] [CrossRef] [PubMed]
- Prakash, P.; Lee, W.-H.; Loo, C.-Y.; Wong, H.S.J.; Parumasivam, T. Advances in polyhydroxyalkanoate nanocarriers for effective drug delivery: An overview and challenges. Nanomaterials 2022, 12, 175. [Google Scholar] [CrossRef]
- Hamdy, S.M.; Danial, A.W.; Halawani, E.M.; Shoreit, A.A.M.; Hesham, A.E.-L.; Gad El-Rab, S.M.F. Biofabrication strategy of silver-nanodrug conjugated polyhydroxybutyrate degrading probiotic and its application as a novel wound dressing. Int. J. Biol. Macromol. 2023, 250, 126219. [Google Scholar] [CrossRef]
- Sabapathy, P.C.; Devaraj, S.; Anburajan, P.; Parez, A.; Kathirvel, P.; Qi, X. Active polyhydroxybutyrate (PHB)/sugarcane bagasse fiber-based anti-microbial green composite: Material characterization and degradation studies. Appl. Nanosci. 2023, 13, 1187–1199. [Google Scholar] [CrossRef]
- Miu, D.-M.; Eremia, M.C.; Moscovici, M. Polyhydroxyalkanoates (PHAs) as biomaterials in tissue engineering: Production, isolation, characterization. Materials 2022, 15, 1410. [Google Scholar] [CrossRef] [PubMed]
- Pulingam, T.; Appaturi, J.N.; Parumasivam, T.; Ahmad, A.; Sudesh, K. Biomedical applications of polyhydroxyalkanoate in tissue engineering. Polymers 2022, 14, 2141. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.-Y.; Yang, H.; Chen, J.-N.; Lin, Y.; Han, S.-Y.; Cao, Q.; Zeng, H.-S.; Ye, J.-W. A polyhydroxyalkanoates-based carrier platform of bioactive substances for therapeutic applications. Front. Bioeng. Biotechnol. 2022, 9, 798724. [Google Scholar] [CrossRef]
- Tanaya, K.; Mohapatra, S.; Samantaray, D. Formulation of biogenic fluorescent pigmented PHB nanoparticles from Rhodanobacter sp. for drug delivery. Antonie Van Leeuwenhoek 2024, 117, 75. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Adama, N.; Adjalle, K.; Blais, J.-F. Sustainable applications of polyhydroxyalkanoates in various fields: A critical review. Int. J. Biol. Macromol. 2022, 221, 1184–1201. [Google Scholar] [CrossRef]
- Vasudevan, M.; Natarajan, N. Towards achieving sustainable bioplastics production and nutrient recovery from wastewater—A comprehensive overview on polyhydroxybutyrate. Biomass Conv. Bioref. 2022, 1–20. [Google Scholar] [CrossRef]
Algal Biomass | Pretreatment Method | Reducing Sugar (g/L) | PHA | References | ||
---|---|---|---|---|---|---|
Microbial PHA Producer | Yield (g/L) | Composition | ||||
Algal biodiesel waste | - a | - | Halomonas daqingensis | 0.24 | PHB | [40] |
Halomonas ventosae | 0.21 | PHB | ||||
Algal biomass | Acid and microwave-peroxidenanoparticles | 0.99 b | Mixed culture | 0.74 b | PHB | [74] |
Chlorella sp. | Acid (HCl) | 20.0 | Bacillus megaterium ALA2 | 0.84 | PHB | [38] |
Cupriavidus necator KCTC 2649 | 7.51 | PHB | ||||
Haloferax mediterranei DSM 1411 | 3.79 | P(3HB-co-3HV) | ||||
Dilute acid (H2SO4 and HCl) | 52.0 | Paracoccus sp. LL1 | 3.62 | P(3HB-co-3HV) | [42] | |
Chlorella vulgaris 13-1 | Acid (H2SO4) | 10.8 | Halomonas halophila | 0.05 | PHB | [31] |
C. vulgaris C-1 | Acid (H2SO4 and HCl) and mechanical destruction | 39.4 | C. necator B8619 | 0.44 | PHB | [88] |
Chlorella sorokiniana SU-1 | Acid (H2SO4) | 39.8 | Rhodotorula glutinis #100-29 | 1.83 | PHB | [35] |
Chlorococcum sp. MC-1 | Acid (H2SO4) | 12.5 | H. halophila | 1.04 | PHB | [31] |
Coelastrum astroideu RW10 | Acid (H2SO4) | 11.4 | H. halophila | 0.08 | PHB | [31] |
Corallina mediterranea | Acid (H2SO4) | - | Halomonas pacifica ASL 10 | 2.80 | P(3HB-co-3HV) | [41] |
Halomonas salifodiane ASL 11 | 3.00 | P(3HB-co-3HV) | ||||
Desmodesmus sp. RUC-2 | Acid (H2SO4) | 16.2 | H. halophila | 0.78 | PHB | [31] |
Eucheuma spinosum | Acid (HCl) | 21.4 | C. necator CECT4635 | 0.60 b | PHB | [73] |
Dilute acid (H2SO4) | - | Halomonas sp. YLGW01 | 3.9 | PHB | [86] | |
Gelidium amansii | Acid (H2SO4) | 29.1 | Bacillus megaterium KCTC 2194 | 5.50 | P(3HB-co-3HV) | [37] |
Gelidium corneum | Hydrothermal | - | Halomonas boliviensis DSM15516 | 21.5 | PHB | [36] |
Laminaria japonica | Acid (HCl and H2SO4) | 5.9–6.1 | Paracoccus sp. LL1 | 1.58 | P(3HB-co-3HV) | [39] |
5.8–6.0 | B. megaterium ALA2 | 0.65 | PHB | |||
5.9–6.1 | C. necator NCIMB 11599 | 2.39 | PHB | |||
Pterocladia capillacea | Acid (H2SO4) | - | H. pacifica ASL 10 | 1.00 | P(3HB-co-3HV) | [41] |
H. salifodiane ASL 11 | 1.50 | P(3HB-co-3HV) | ||||
Sargassum sp. | Acid (H2SO4 and HCl) | - | C. necator PTCC1615 | 3.93 | PHB | [89] |
Spirulina sp. | Acid (H2SO4) | - | H. pacifica ASL 10 | 1.30 | P(3HB-co-3HV) | [41] |
H. salifodiane ASL 11 | 1.20 | P(3HB-co-3HV) | ||||
Ulva sp. | Subcritical water | - | H. mediterranei | 2.20 | P(3HB-co-3HV) | [87] |
2.08 | P(3HB-co-3HV) | [90] | ||||
0.12 b | P(3HB-co-3HV) | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayanasamy, A.; Patel, S.K.S.; Singh, N.; Rohit, M.V.; Lee, J.-K. Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives. Polymers 2024, 16, 2227. https://doi.org/10.3390/polym16152227
Narayanasamy A, Patel SKS, Singh N, Rohit MV, Lee J-K. Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives. Polymers. 2024; 16(15):2227. https://doi.org/10.3390/polym16152227
Chicago/Turabian StyleNarayanasamy, Anand, Sanjay K. S. Patel, Neha Singh, M. V. Rohit, and Jung-Kul Lee. 2024. "Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives" Polymers 16, no. 15: 2227. https://doi.org/10.3390/polym16152227
APA StyleNarayanasamy, A., Patel, S. K. S., Singh, N., Rohit, M. V., & Lee, J. -K. (2024). Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives. Polymers, 16(15), 2227. https://doi.org/10.3390/polym16152227