Advances in Polymeric Foams

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: closed (5 May 2023) | Viewed by 1715

Special Issue Editors


E-Mail Website
Guest Editor
Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei 10608, Taiwan
Interests: polymer synthesis; crystallization kinetics; polymeric foams; sensors; hot-melt adhesives

E-Mail Website
Guest Editor
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
Interests: polymer and nanocomposites synthesis; microgels; nanogels; conductive polymers; sensor

Special Issue Information

Dear Colleagues,

Polymeric foams are gaining more and more interest in emerging sectors, which are demanding more efficient materials to meet complex technical requirements including improved specific properties and reduced energy consumption. Polymeric foams, in specific, have exposed great flexibility in recent years in final attributes such as microstructure control and secondary rigid phases. Control of microstructure and final properties are inclined by the constituent nanoparticles that are dispersed throughout the polymer matrix (“polymer nanocomposite foams”), which have been sensibly selected based on these deliberations. Additionally, novel innovative foaming technologies have been advanced in current years. Both of these techniques have permitted the formation of novel polymer-based foams with bimodal, micro-, sub-micro- or nano-cellular foam textures, growing the extensive range of applications of present polymer foams and opening up new potentials such as shoe soles, tissue engineering, high-temperature applications, and catalysis.

Dr. Palraj Ranganathan
Dr. Bhuvanenthiran Mutharani
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermoplastic, thermosetting, and elastomeric polymer foams
  • polymer nanocomposite foams
  • nano- and micro-cellular foams
  • uniform, bimodal foams
  • recyclable foams
  • biodegradable foams
  • flame-retardant foams
  • conductive foams (thermally and electrically)
  • extrusion foams
  • supercritical carbon dioxide foams

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 5102 KiB  
Article
Synthesis of High-Value Bio-Based Polyamide 12,36 Microcellular Foams with Excellent Dimensional Stability and Shape Recovery Properties
by Chin-Wen Chen, Palraj Ranganathan, Bhuvanenthiran Mutharani, Jia-Wei Shiu, Syang-Peng Rwei, Yen-Hsiang Chang and Fang-Chyou Chiu
Polymers 2024, 16(1), 159; https://doi.org/10.3390/polym16010159 - 4 Jan 2024
Viewed by 897
Abstract
The search for alternatives to petroleum-based thermoplastic polyamide elastomers (TPAEs) has recently drawn great interest. In this study, a bio-massed TPAE, PA12,36, was synthesized using 1,12-dodecanediamine (DDA) and fatty dimer acid (FDA, PripolTM1009) precursors via catalyst and solvent-free melt polycondensation. The [...] Read more.
The search for alternatives to petroleum-based thermoplastic polyamide elastomers (TPAEs) has recently drawn great interest. In this study, a bio-massed TPAE, PA12,36, was synthesized using 1,12-dodecanediamine (DDA) and fatty dimer acid (FDA, PripolTM1009) precursors via catalyst and solvent-free melt polycondensation. The molecular structure and molecular weight of the PA12,36 were characterized by 1H NMR, FTIR, and GPC. PA12,36 displayed a low melting temperature of 85.8 °C, an initial degradation temperature of 425 °C, and a glass-transition temperature of 30.4 °C, whereas it sustained satisfactory tensile strength (10.0 MPa) and superior strain at break (1378%). Furthermore, PA12,36 was foamed by supercritical CO2, and the cell size, cell density, and porosity were determined. The entangled long-chained FDA component generated a physically crosslinked network, which promoted the melt viscosity of PA12,36 against elongations of foam cell growth and increased foamability significantly. As a result, uniform structured cellular foams with a cell diameter of 15–24 µm and high cell density (1011 cells/cm3–1012 cells/cm3) were successfully achieved. The foaming window was widened from 76 to 81 °C, and the expansion ratio was increased from 4.8 to 9.6. Additionally, PA12,36 foam with a physically crosslinked structure presented a better creep shape recovery percentage (92–97.9%) and sturdier dimensional stability. This bio-based PA12,36 foam is a promising candidate to replace petroleum-based thermoplastic elastomer foams for engineering applications, particularly shoe soles. Full article
(This article belongs to the Special Issue Advances in Polymeric Foams)
Show Figures

Figure 1

Back to TopTop