Biomedical Applications of Polymeric Materials

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biomacromolecules, Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (25 August 2023) | Viewed by 51281

Special Issue Editor

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
Interests: biopolymeric films; wound healing; electrospun nanofibers; chitosan/hyaluronic acid materials for wound healing; organic synthesis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymers, and especially biopolymers, have attracted the interest of scientists since ancient times and are widely used in the medical and pharmaceutical fields due to their unique properties, which include versatility, bacteriostatic and haemostatic action, low cost of production, non-toxicity, great functionality, biocompatibility, and high absorbent capacity. The medical applications of biopolymeric materials varies from general healthcare to specific and very targeted domains such as surgery, wound healing, cancer management, tissue engineering, implants, and drug delivery system formulation. The development of functionalized polymeric materials or nanobiomaterials is a field of great relevance because it includes a multitude of biomaterials that can find medical applications as films, sponges, wound dressings, hydrogels, aerogels, electrospun nanofibers, nanoparticles, etc.

Modern techniques can enable the precise control of polymers or biopolymers for the proper development of convenient candidates for biomedical applications. Thus, in this Special Issue we want to allow researchers to disseminate their results related to polymeric materials used in biomedical applications.

Dr. Andreea-Teodora Iacob
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biopolymers
  • polysaccharide
  • medical application
  • pharmaceutical application
  • in vitro and in vivo assays
  • chemical properties
  • physical properties
  • polymer chain structure
  • biopolymeric materials
  • polymeric materials

Published Papers (21 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 2374 KiB  
Article
Comparison between the Astaxanthin Release Profile of Mesoporous Bioactive Glass Nanoparticles (MBGNs) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/MBGN Composite Microspheres
by Arturo E. Aguilar-Rabiela, Shahin Homaeigohar, Eduin I. González-Castillo, Mirna L. Sánchez and Aldo R. Boccaccini
Polymers 2023, 15(11), 2432; https://doi.org/10.3390/polym15112432 - 24 May 2023
Cited by 1 | Viewed by 1369
Abstract
In recent years, composite biomaterials have attracted attention for drug delivery applications due to the possibility of combining desired properties of their components. However, some functional characteristics, such as their drug release efficiency and likely side effects, are still unexplored. In this regard, [...] Read more.
In recent years, composite biomaterials have attracted attention for drug delivery applications due to the possibility of combining desired properties of their components. However, some functional characteristics, such as their drug release efficiency and likely side effects, are still unexplored. In this regard, controlled tuning of the drug release kinetic via the precise design of a composite particle system is still of high importance for many biomedical applications. This objective can be properly fulfilled through the combination of different biomaterials with unequal release rates, such as mesoporous bioactive glass nanoparticles (MBGN) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres. In this work, MBGNs and PHBV-MBGN microspheres, both loaded with Astaxanthin (ASX), were synthesised and compared in terms of ASX release kinetic, ASX entrapment efficiency, and cell viability. Moreover, the correlation of the release kinetic to phytotherapeutic efficiency and side effects was established. Interestingly, there were significant differences between the ASX release kinetic of the developed systems, and cell viability differed accordingly after 72 h. Both particle carriers effectively delivered ASX, though the composite microspheres exhibited a more prolonged release profile with sustained cytocompatibility. The release behaviour could be fine-tuned by adjusting the MBGN content in the composite particles. Comparatively, the composite particles induced a different release effect, implying their potential for sustained drug delivery applications. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

19 pages, 5811 KiB  
Article
Carbonised Human Hair Incorporated in Agar/KGM Bioscaffold for Tissue Engineering Application: Fabrication and Characterisation
by Vieralynda Vitus, Fatimah Ibrahim, Shamsul Azlin Ahmad Shamsuddin, Nuguelis Razali, Noor Anastasha Balqis Noor Azlan and Wan Safwani Wan Kamarul Zaman
Polymers 2022, 14(24), 5489; https://doi.org/10.3390/polym14245489 - 15 Dec 2022
Cited by 1 | Viewed by 1263
Abstract
Carbon derived from biomass waste usage is rising in various fields of application due to its availability, cost-effectiveness, and sustainability, but it remains limited in tissue engineering applications. Carbon derived from human hair waste was selected to fabricate a carbon-based bioscaffold (CHAK) due [...] Read more.
Carbon derived from biomass waste usage is rising in various fields of application due to its availability, cost-effectiveness, and sustainability, but it remains limited in tissue engineering applications. Carbon derived from human hair waste was selected to fabricate a carbon-based bioscaffold (CHAK) due to its ease of collection and inexpensive synthesis procedure. The CHAK was fabricated via gelation, rapid freezing, and ethanol immersion and characterised based on their morphology, porosity, Fourier transforms infrared (FTIR), tensile strength, swelling ability, degradability, electrical conductivity, and biocompatibility using Wharton’s jelly-derived mesenchymal stem cells (WJMSCs). The addition of carbon reduced the porosity of the bioscaffold. Via FTIR analysis, the combination of carbon, agar, and KGM was compatible. Among the CHAK, the 3HC bioscaffold displayed the highest tensile strength (62.35 ± 29.12 kPa). The CHAK also showed excellent swelling and water uptake capability. All bioscaffolds demonstrated a slow degradability rate (<50%) after 28 days of incubation, while the electrical conductivity analysis showed that the 3AHC bioscaffold had the highest conductivity compared to other CHAK bioscaffolds. Our findings also showed that the CHAK bioscaffolds were biocompatible with WJMSCs. These findings showed that the CHAK bioscaffolds have potential as bioscaffolds for tissue engineering applications. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Graphical abstract

8 pages, 1144 KiB  
Article
Synthesis of Biocompatible Composite Material Based on Cryogels of Polyvinyl Alcohol and Calcium Phosphates
by Rustam Sadykov, Daria Lytkina, Ksenia Stepanova and Irina Kurzina
Polymers 2022, 14(16), 3420; https://doi.org/10.3390/polym14163420 - 21 Aug 2022
Cited by 5 | Viewed by 1317
Abstract
At the moment, the field of biomedical materials science is actively developing, which aims at creating new functional materials. A developing direction in biomedical materials science is that towards the treatment of diseases associated with bone tissue disorders, using biodegradable composite materials based [...] Read more.
At the moment, the field of biomedical materials science is actively developing, which aims at creating new functional materials. A developing direction in biomedical materials science is that towards the treatment of diseases associated with bone tissue disorders, using biodegradable composite materials based on polymer and calcium phosphate materials. We developed a material based on polyvinyl alcohol cryogel, mineralized with calcium phosphate. A material based on cryogel of polyvinyl alcohol mineralized with calcium phosphate was developed. The composites were obtained by the method of cyclic freezing–thawing, and the synthesis of calcium phosphates was carried out in situ with heating, stirring, and exposure to microwave radiation. The phase composition, as well as the composition of functional groups, was determined by IR spectroscopy and X-ray phase analysis. Monocytes isolated from human blood showed higher viability compared to the controls. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

13 pages, 2131 KiB  
Article
The Analysis of Acute and Subacute Toxicity of Silver Selenide Nanoparticles Encapsulated in Arabinogalactan Polymer Matrix
by Evgeniy A. Titov, Larisa M. Sosedova, Mikhail A. Novikov, Marina V. Zvereva, Viktor S. Rukavishnikov and Oleg L. Lakhman
Polymers 2022, 14(15), 3200; https://doi.org/10.3390/polym14153200 - 05 Aug 2022
Cited by 2 | Viewed by 1414
Abstract
The acute and subacute toxicity of a newly synthesized silver selenide nanoparticles encapsulated in a natural polymeric matrix of arabinogalactan study has been studied. The nanocomposite is a promising material for the design of diagnostic and therapeutic drugs. It can also be used [...] Read more.
The acute and subacute toxicity of a newly synthesized silver selenide nanoparticles encapsulated in a natural polymeric matrix of arabinogalactan study has been studied. The nanocomposite is a promising material for the design of diagnostic and therapeutic drugs. It can also be used for the preparation of fluorescent labels and in thermal oncotherapy. The employment of binary nanocomposites enables one to unveil the potential hidden in metals which constitute these composites. The study of acute toxicity, carried out by the oral administration of nanocomposites at a dose of 2000 mg/kg, has shown that the compound belongs to low-toxic substances of the 5th hazard class. With the subacute oral administration of nanocomposites at a dose of 500 μg/kg, slight changes are observed in the brain tissue and liver of experimental animals, indicating the development of compensatory–adaptive reactions. In the kidneys, the area of the Shumlyansky–Bowman chamber decreases by 40.5% relative to the control group. It is shown that the application of the protective properties of selenium, which is contained in the composite, helps to reduce the toxicity of silver. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

26 pages, 7230 KiB  
Article
Microscopic and Spectroscopic Imaging and Thermal Analysis of Acrylates, Silicones and Active Pharmaceutical Ingredients in Adhesive Transdermal Patches
by Barbara Mikolaszek, Marzena Jamrógiewicz, Krystyna Mojsiewicz-Pieńkowska and Małgorzata Sznitowska
Polymers 2022, 14(14), 2888; https://doi.org/10.3390/polym14142888 - 16 Jul 2022
Cited by 6 | Viewed by 1906
Abstract
Dermal or transdermal patches are increasingly becoming a noteworthy alternative as carriers for active pharmaceutical ingredients (APIs), which makes their detailed physicochemical evaluation essential for pharmaceutical development. This paper demonstrates mid-infrared (FTIR) and Raman spectroscopy with complementary microscopic methods (SEM, optical and confocal [...] Read more.
Dermal or transdermal patches are increasingly becoming a noteworthy alternative as carriers for active pharmaceutical ingredients (APIs), which makes their detailed physicochemical evaluation essential for pharmaceutical development. This paper demonstrates mid-infrared (FTIR) and Raman spectroscopy with complementary microscopic methods (SEM, optical and confocal Raman microscopy) and differential scanning calorimetry (DSC) as tools for the identification of the state of model API (testosterone TST, cytisine CYT or indomethacin IND) in selected adhesive matrices. Among the employed spectroscopic techniques, FTIR and Raman may be used not only as standard methods for API identification in the matrix, but also as a means of distinguishing commercially available polymeric materials of a similar chemical structures. A novel approach for the preparation of adhesive polymers for the FTIR analysis was introduced. In silicone matrices, all three APIs were suspended, whereas in the case of the acrylic PSA, Raman microscopy confirmed that only IND was dissolved in all three acrylic matrices, and the dissolved fraction of the CYT differed depending on the matrix type. Moreover, the recrystallization of TST was observed in one of the acrylates. Interestingly, a DSC analysis of the acrylic patches did not confirm the presence of the API even if the microscopic images showed suspended particles. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Graphical abstract

15 pages, 4168 KiB  
Article
Layer-By-Layer Self-Assembled Dip Coating for Antifouling Functionalized Finishing of Cotton Textile
by Sana Javaid, Azhar Mahmood, Habib Nasir, Mudassir Iqbal, Naveed Ahmed and Nasir M. Ahmad
Polymers 2022, 14(13), 2540; https://doi.org/10.3390/polym14132540 - 22 Jun 2022
Cited by 5 | Viewed by 1943
Abstract
The fouling of surfaces such as textiles is a major health challenge, and there is a continuous effort to develop materials and processes to overcome it. In consideration of this, this study regards the development of antifouling functional nanoencapsulated finishing for the cotton [...] Read more.
The fouling of surfaces such as textiles is a major health challenge, and there is a continuous effort to develop materials and processes to overcome it. In consideration of this, this study regards the development of antifouling functional nanoencapsulated finishing for the cotton textile fabric by employing a layer-by-layer dip coating technique. Antifouling textile finishing was formulated by inducing the nanoencapsulation of the antifouling functional group inside the hydrophobic polymeric shell. Cotton fabric was taken as a substrate to incorporate antibacterial functionality by alternatively fabricating multilayers of antifouling polymeric formulation (APF) and polyelectrolyte solution. The surface morphology of nanoencapsulated finished textile fabric was characterized through scanning electron microscopy to confirm the uniform distribution of nanoparticles on the cotton textile fabric. Optical profilometry and atomic force microscopy studies indicated increased surface roughness in the coated textile substrate as compared to the uncoated textile. The surface thickness of the fabricated textile increased with the number of deposited bilayers on the textile substrate. Surface hydrophobicity increased with number of coating bilayers with θ values of x for single layer, up to y for 20 bilayers. The antibacterial activity of the uncoated and layer-by-layer coated finished textile was also evaluated. It was significant and exhibited a significant zone of inhibition against microbial strains Gram-positive S. aureus and Gram-negative E. coli. The bilayer coating exhibited water repellency, hydrophobicity, and antibacterial activity. Thus, the fabricated textile could be highly useful for many industrial and biomedical applications. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Graphical abstract

17 pages, 3030 KiB  
Article
Antiseptic Polymer–Surfactant Complexes with Long-Lasting Activity against SARS-CoV-2
by Vyacheslav S. Molchanov, Andrey V. Shibaev, Eduard V. Karamov, Viktor F. Larichev, Galina V. Kornilaeva, Irina T. Fedyakina, Ali S. Turgiev, Olga E. Philippova and Alexei R. Khokhlov
Polymers 2022, 14(12), 2444; https://doi.org/10.3390/polym14122444 - 16 Jun 2022
Cited by 6 | Viewed by 2007
Abstract
Antiseptic polymer gel–surfactant complexes were prepared by incorporating the low-molecular-weight cationic disinfectant cetylpyridinium chloride into the oppositely charged, slightly cross-linked polymer matrices. Three types of polymers were used: copolymers of acrylamide and sodium 2-acrylamido-2-methylpropane sulfonate; copolymers of acrylamide and sodium methacrylate; copolymers of [...] Read more.
Antiseptic polymer gel–surfactant complexes were prepared by incorporating the low-molecular-weight cationic disinfectant cetylpyridinium chloride into the oppositely charged, slightly cross-linked polymer matrices. Three types of polymers were used: copolymers of acrylamide and sodium 2-acrylamido-2-methylpropane sulfonate; copolymers of acrylamide and sodium methacrylate; copolymers of vinylpyrrolidone and sodium methacrylate. It was shown that the rate of the release of the cationic disinfectant from the oppositely charged polymer gels could be tuned in a fairly broad range by varying the concentration of the disinfectant, the degree of swelling, and degree of cross-linking of the gel and the content/type of anionic repeat units in the polymer matrix. Polymer–surfactant complexes were demonstrated to reduce SARS-CoV-2 titer by seven orders of magnitude in as little as 5 s. The complexes retained strong virucidal activity against SARS-CoV-2 for at least one week. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

19 pages, 8961 KiB  
Article
Chitosan Microparticles Loaded with New Non-Cytotoxic Isoniazid Derivatives for the Treatment of Tuberculosis: In Vitro and In Vivo Studies
by Ionut Dragostin, Oana-Maria Dragostin, Andreea Teodora Iacob, Maria Dragan, Carmen Lidia Chitescu, Luminita Confederat, Alexandra-Simona Zamfir, Rodica Tatia, Catalina Daniela Stan and Carmen Lacramioara Zamfir
Polymers 2022, 14(12), 2310; https://doi.org/10.3390/polym14122310 - 07 Jun 2022
Cited by 3 | Viewed by 2028
Abstract
Lately, in the world of medicine, the use of polymers for the development of innovative therapies seems to be a major concern among researchers. In our case, as a continuation of the research that has been developed so far regarding obtaining new isoniazid [...] Read more.
Lately, in the world of medicine, the use of polymers for the development of innovative therapies seems to be a major concern among researchers. In our case, as a continuation of the research that has been developed so far regarding obtaining new isoniazid (INH) derivatives for tuberculosis treatment, this work aimed to test the ability of the encapsulation method to reduce the toxicity of the drug, isoniazid and its new derivatives. To achieve this goal, the following methods were applied: a structural confirmation of isoniazid derivatives using LC-HRMS/MS; the obtaining of microparticles based on polymeric support; the determination of their loading and biodegradation capacities; in vitro biocompatibility using MTT cell viability assays; and, last but not least, in vivo toxicological screening for the determination of chronic toxicity in laboratory mice, including the performance of a histopathological study and testing for liver enzymes. The results showed a significant reduction in tissue alterations, the disappearance of cell necrosis and microvesicular steatosis areas and lower values of the liver enzymes TGO, TGP and alkaline phosphatase when using encapsulated forms of drugs. In conclusion, the encapsulation of INH and INH derivatives with chitosan had beneficial effects, suggesting a reduction in hepatotoxicity and, therefore, the achievement of the aim of this paper. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

12 pages, 1087 KiB  
Article
Effect of Polymers and Permeation Enhancers in the Release of Quetiapine Fumarate Transdermal Patch through the Dialysis Membrane
by Mullaicharam Bhupathyraaj, K. Reeta Vijaya Rani, Sathvik B. Sridhar, Javed Shareef, Sabin Thomas, Nirmala Halligudi, Anbazhagan Sockalingam, Kiruba Mohandoss and Shyam Sundar
Polymers 2022, 14(10), 1984; https://doi.org/10.3390/polym14101984 - 13 May 2022
Cited by 1 | Viewed by 1863
Abstract
Quetiapine Fumarate is potent, and the daily therapeutic dose can be delivered easily across the skin with the help of permeation enhancers. Quetiapine Fumarate-loaded transdermal patches were prepared by solvent evaporation technique. Various formulation parameters, excipients, and their combinations were optimized to get [...] Read more.
Quetiapine Fumarate is potent, and the daily therapeutic dose can be delivered easily across the skin with the help of permeation enhancers. Quetiapine Fumarate-loaded transdermal patches were prepared by solvent evaporation technique. Various formulation parameters, excipients, and their combinations were optimized to get thin, translucent, smooth, stable, and high permeable character patches. A total number of 10 formulations were prepared. All formulations were subjected to various physicochemical evaluations. Three different formulations were prepared and F1, F2, and F3. Various physicochemical studies were carried out and found no significant difference between the three batches. The in vitro release study showed 74.29%, 82.73%, and 77.27%, respectively, up to 24 h. From the results, F2 has been selected as an optimized formulation and evaluated for skin irritation test. The results revealed that there is no irritation produced. The stability study results showed that there is no significant change from its initial nature till the period of three months in both temperatures. Quetiapine Fumarate Transdermal Patch F2 has achieved the goal of extended-release, cost-effectiveness, lowering the dose and frequency of drug administration, and thus may improve patient compliance. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

17 pages, 3308 KiB  
Article
Antibacterial and Antifungal Properties of Modified Chitosan Nonwovens
by Dominik Sikorski, Marta Bauer, Justyna Frączyk and Zbigniew Draczyński
Polymers 2022, 14(9), 1690; https://doi.org/10.3390/polym14091690 - 21 Apr 2022
Cited by 13 | Viewed by 2245
Abstract
Chitosan acquires bacteriostatic properties via protonation of its amino groups. However, much of the literature assumes that chitosan itself inhibits the growth of bacteria. This article presents a comparative study of chitosan nonwovens modified with various acids, including acetic, propionic, butyric, and valeric [...] Read more.
Chitosan acquires bacteriostatic properties via protonation of its amino groups. However, much of the literature assumes that chitosan itself inhibits the growth of bacteria. This article presents a comparative study of chitosan nonwovens modified with various acids, including acetic, propionic, butyric, and valeric organic acids, as well as hydrochloric acid. The aim was to determine which acid salts influence the antibacterial and antifungal activity of chitosan-based materials. Two methods were used to modify (formation of ammonium salts) the chitosan nonwovens: First, acid vapors (gassing process) were used to find which salt of chitosan had the best antibacterial properties. Based on the results, the most effective acid was prepared in a solution in ethanol. The influence of the acid concentration in ethanol, the time of treatment of chitosan materials with acid solution, and the rinsing process of modified nonwovens on the antimicrobial activity of the modified materials was investigated. The modified materials were subjected to microbiological tests. Each of the modified materials was placed in bacterial inoculum. The cultures were tested on agar to observe their microbial activity. Toxicity to human red blood cells was also investigated. A reduction in the number of bacterial cells was observed for the S. aureus strain with chitosan salt modified with 10% acetic acid in ethanol. The antibacterial activity of the chitosan salts increased with the percentage of acid salts formed on the surface of the solid material (decreasing numbers of bacterial colonies or no growth). No reduction in growth was observed for the E. coli strain. The chitosan samples were either inactive or completely eliminated the bacterial cells. Antimicrobial activity was observed for chitosan salts with hydrochloric acid and acetic acid. Finally, 1H-NMR spectroscopy and FTIR spectroscopy were used to confirm the incorporation of the acid groups to the amino groups of chitosan. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Graphical abstract

19 pages, 2695 KiB  
Article
Biodegradable and Biocompatible Thermoplastic Poly(Ester-Urethane)s Based on Poly(ε-Caprolactone) and Novel 1,3-Propanediol Bis(4-Isocyanatobenzoate) Diisocyanate: Synthesis and Characterization
by Alejandra Rubio Hernández-Sampelayo, Rodrigo Navarro, Dulce María González-García, Luis García-Fernández, Rosa Ana Ramírez-Jiménez, María Rosa Aguilar and Ángel Marcos-Fernández
Polymers 2022, 14(7), 1288; https://doi.org/10.3390/polym14071288 - 23 Mar 2022
Cited by 3 | Viewed by 2277
Abstract
A series of non-toxic biodegradable and biocompatible polyurethanes bearing p-aminobenzoate moieties are presented. The introduction of this attractive motif was carried out by the synthesis of a novel isocyanate. These biodegradable polymers were chemically and physically characterized by several techniques and methods including [...] Read more.
A series of non-toxic biodegradable and biocompatible polyurethanes bearing p-aminobenzoate moieties are presented. The introduction of this attractive motif was carried out by the synthesis of a novel isocyanate. These biodegradable polymers were chemically and physically characterized by several techniques and methods including bioassay and water uptake measurements. The molecular weight of the soft segment (poly-ε-caprolactone, PCL) and hard segment crystallinity dictated the mechanical behavior and water uptake. The behavior of short PCL-based polyurethanes was elastomeric, whilst increasing the molecular weight of the soft segment led to plastic polyurethanes. Water uptake was hindered for long PCL due to the crystallization of the soft segment within the polyurethane matrix. Furthermore, two different types of chain extender, hydrolyzable and non-hydrolyzable, were also evaluated: polyurethanes based on hydrolyzable chain extenders reached higher molecular weights, thus leading to a better performance than their unhydrolyzable counterparts. The good cell adhesion and cytotoxicity results demonstrated the cell viability of human osteoblasts on the surfaces of these non-toxic biodegradable polyurethanes. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

11 pages, 3089 KiB  
Article
Modification of the Polymer of a Bone Cement with Biodegradable Microspheres of PLGA and Loading with Daptomycin and Vancomycin Improve the Response to Bone Tissue Infection
by Joaquin García-García, Galo Azuara, Oscar Fraile-Martinez, Cielo García-Montero, Miguel Angel Álvarez-Mon, Sara Ruíz-Díez, Melchor Álvarez-Mon, Julia Buján, Natalio García-Honduvilla, Miguel A. Ortega and Basilio De la Torre
Polymers 2022, 14(5), 888; https://doi.org/10.3390/polym14050888 - 23 Feb 2022
Cited by 6 | Viewed by 1771
Abstract
Chronic infections are one of the most serious adverse outcomes of prosthetic surgery. Prosthetic revision surgery using a bone cement loaded with antibiotics between the two stages of the surgery is commonly performed. However, this method often fails to reach the minimum inhibitory [...] Read more.
Chronic infections are one of the most serious adverse outcomes of prosthetic surgery. Prosthetic revision surgery using a bone cement loaded with antibiotics between the two stages of the surgery is commonly performed. However, this method often fails to reach the minimum inhibitory concentration and promotes antibiotic resistance, thus emphasizing the need for improving the current available therapies. Materials and methods: In this study, we performed a study of the in vivo response of a polymer-based construct of poly (lactic-co-glycolic acid) (PLGA) in the solid phase of Palacos R® in combination with vancomycin, daptomycin, and/or linezolid. To test its effectiveness, we applied an in vivo model, using both histological and immunohistochemical analyses to study the bone tissue. Results: The presence of PLGA in the combination of vancomycin with daptomycin showed the most promising results regarding the preservation of bone cytoarchitecture and S. aureus elimination. Conversely, the combination of vancomycin plus linezolid was associated with a loss of bone cytoarchitecture, probably related to an increased macrophage response and inefficient antimicrobial activity. Conclusions: The modification of Palacos R® bone cement with PLGA microspheres and its doping with the antibiotic daptomycin in combination with vancomycin improve the tissue response to bone infection. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Graphical abstract

17 pages, 3445 KiB  
Article
Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability
by Diana Araújo, Thomas Rodrigues, Vítor D. Alves and Filomena Freitas
Polymers 2022, 14(4), 785; https://doi.org/10.3390/polym14040785 - 17 Feb 2022
Cited by 11 | Viewed by 2422
Abstract
Chitin-glucan complex (CGC) hydrogels were fabricated through a freeze–thaw procedure for biopolymer dissolution in NaOH 5 mol/L, followed by a dialysis step to promote gelation. Compared to a previously reported methodology that included four freeze–thaw cycles, reducing the number of cycles to one [...] Read more.
Chitin-glucan complex (CGC) hydrogels were fabricated through a freeze–thaw procedure for biopolymer dissolution in NaOH 5 mol/L, followed by a dialysis step to promote gelation. Compared to a previously reported methodology that included four freeze–thaw cycles, reducing the number of cycles to one had no significant impact on the hydrogels’ formation, as well as reducing the total freezing time from 48 to 18 h. The optimized CGC hydrogels exhibited a high and nearly spontaneous swelling ratio (2528 ± 68%) and a water retention capacity of 55 ± 3%, after 2 h incubation in water, at 37 °C. Upon loading with caffeine as a model drug, an enhancement of the mechanical and rheological properties of the hydrogels was achieved. In particular, the compressive modulus was improved from 23.0 ± 0.89 to 120.0 ± 61.64 kPa and the storage modulus increased from 149.9 ± 9.8 to 315.0 ± 76.7 kPa. Although the release profile of caffeine was similar in PBS and NaCl 0.9% solutions, the release rate was influenced by the solutions’ pH and ionic strength, being faster in the NaCl solution. These results highlight the potential of CGC based hydrogels as promising structures to be used as drug delivery devices in biomedical applications. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Graphical abstract

13 pages, 6714 KiB  
Article
The Effect of Polymers on Drug Release Kinetics in Nanoemulsion In Situ Gel Formulation
by K. Reeta Vijaya Rani, Sruthi Rajan, Mullaicharam Bhupathyraaj, R. Krishna Priya, Nirmala Halligudi, Mohammad Abobakr Al-Ghazali, Sathvik B. Sridhar, Javedh Shareef, Sabin Thomas, Saleem M. Desai and Pandurang D. Pol
Polymers 2022, 14(3), 427; https://doi.org/10.3390/polym14030427 - 21 Jan 2022
Cited by 16 | Viewed by 3439
Abstract
Glaucoma is an ocular condition characterized by elevated intraocular pressure (IOP). Conventional treatments of glaucoma face poor corneal permeability and bioavailability. To address these issues, a nanoemulsion in situ gel of Timolol maleate was developed in this study by adding the polymer Carbopol [...] Read more.
Glaucoma is an ocular condition characterized by elevated intraocular pressure (IOP). Conventional treatments of glaucoma face poor corneal permeability and bioavailability. To address these issues, a nanoemulsion in situ gel of Timolol maleate was developed in this study by adding the polymer Carbopol 934p. Using Carbopol 934p, a novel ophthalmic pH-induced nanoemulsion in situ gel was formulated. The formulation was liquid at pH 4 and quickly gelled when the pH was raised to 7.4 (Lacrimal pH). The pH-triggered in situ gelling mechanism demonstrated continuous drug release over a 24 h cycle. A total of nine trial formulations were prepared (NEI1–NEI9) and subjected to various physicochemical and in vitro evaluations. According to the in vitro release kinetics, the drug release of Timolol maleate nanoemulsion in situ gel NEI5 followed zero-order kinetics, with a release exponent value of 0.902, indicating that the mechanism of release was non-Fickian diffusion regulated. In vivo results showed that Timolol maleate nanoemulsion in situ gel NEI5 provided a better-sustained release of the drug, compared with the Timolet OD eye drops. The formulation is stable in storage, with no distinguishable change in appearance, physical properties, quality, and percentage drug release. NEI5 also reduces drug administration frequency, which improves patient compliance. Timolol maleate nanoemulsion in situ gel NEI5 achieved the goal of controlled drug delivery with extended-release and cost-effectiveness, lowering the dosage and frequency of drug administration, and thus may improve patient compliance. In conclusion, the stable nanoemulsion in situ gel of Timolol maleate NEI5 decreases intraocular pressure (IOP) over a prolonged period. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

21 pages, 6534 KiB  
Article
Scorpion Venom-Functionalized Quercetin Phytosomes for Breast Cancer Management: In Vitro Response Surface Optimization and Anticancer Activity against MCF-7 Cells
by Nabil A. Alhakamy, Usama A. Fahmy, Shaimaa M. Badr Eldin, Osama A. A. Ahmed, Hibah M. Aldawsari, Solomon Z. Okbazghi, Mohamed A. Alfaleh, Wesam H. Abdulaal, Abdulmohsin J. Alamoudi and Fatma M. Mady
Polymers 2022, 14(1), 93; https://doi.org/10.3390/polym14010093 - 27 Dec 2021
Cited by 18 | Viewed by 3477
Abstract
Breast cancer is a dangerous type of cancer in women. Quercetin (QRT), a naturally occurring flavonoid, has wide biological effects including antioxidant, anticarcinogenic, anti-inflammatory, antiallergic, and antiviral activities. The anticancer activity is considered the most valuable effect of QRT against several types of [...] Read more.
Breast cancer is a dangerous type of cancer in women. Quercetin (QRT), a naturally occurring flavonoid, has wide biological effects including antioxidant, anticarcinogenic, anti-inflammatory, antiallergic, and antiviral activities. The anticancer activity is considered the most valuable effect of QRT against several types of cancer, including prostate, liver, lung, colon, and breast cancer. Scorpion venom peptides (SV) has been found to induce apoptosis and aggravate cancer cells, making it a promising anticancer agent. QRT, SV, and Phospholipon® 90H (PL) were incorporated in a nano-based delivery platform to assess QRT’s cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human breast cancer cells MCF-7. Several nanovesicles were prepared and optimized, using four-factor Box–Behnken, in an experimental design. The optimized phytosomes showed vesicle size and zeta potential values of 116.9 nm and 31.5 mV, respectively. The IC50 values revealed that MCF-7 cells were significantly more sensitive to the optimized QRT formula than the plain formula and raw QRT. Cell cycle analysis revealed that optimized QRT formula treatment resulted in significant cell cycle arrest at the S phase. The results also indicated that treatment with QRT formula significantly increased caspase-9, Bax, Bcl-2, and p53 mRNA expression, compared with the plain formula and QRT. In terms of the inflammatory markers, the QRT formula significantly reduced the activity of TNF-α and NF-κB, in comparison with the plain formula and QRT only. Overall, the findings from the study proved that a QRT formulation could be a promising therapeutic approach for the treatment of breast cancer. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 1569 KiB  
Review
Recent Biotechnological Applications of Polyhydroxyalkanoates (PHA) in the Biomedical Sector—A Review
by Matheus Silva da Fonseca Diniz, Murilo Moraes Mourão, Luciana Pereira Xavier and Agenor Valadares Santos
Polymers 2023, 15(22), 4405; https://doi.org/10.3390/polym15224405 - 14 Nov 2023
Cited by 1 | Viewed by 1412
Abstract
Petroleum-derived plastics are materials of great importance for the contemporary lifestyle, and are widely used commercially because they are low cost, resistant, malleable, and weightless, in addition to their hydrophobic character. However, some factors that confer the qualities of these materials also cause [...] Read more.
Petroleum-derived plastics are materials of great importance for the contemporary lifestyle, and are widely used commercially because they are low cost, resistant, malleable, and weightless, in addition to their hydrophobic character. However, some factors that confer the qualities of these materials also cause problems, mainly environmental, associated with their use. The COVID-19 pandemic aggravated these impacts due to the high demand for personal protective equipment and the packaging sector. In this scenario, bioplastics are environmentally positive alternatives to these plastics due to their applicability in several areas ranging from packaging, to biomedicine, to agriculture. Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers usually produced by microorganisms as an energy reserve. Their structural variability provides a wide range of applications, making them a viable option to replace polluting materials. PHAs can be applied in various biotechnology sectors, such as producing drug carriers and scaffolds for tissue engineering. This review aimed to survey works published in the last five years on the study and biotechnological application of PHAs in the biomedical sector, exploring the versatility and advantages of their use and helping to understand how to enhance their application. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

35 pages, 3734 KiB  
Review
Modern Approaches in Wounds Management
by Simona-Maria Tatarusanu, Florentina-Geanina Lupascu, Bianca-Stefania Profire, Andrei Szilagyi, Ioannis Gardikiotis, Andreea-Teodora Iacob, Iulian Caluian, Lorena Herciu, Tudor-Catalin Giscă, Mihaela-Cristina Baican, Florina Crivoi and Lenuta Profire
Polymers 2023, 15(17), 3648; https://doi.org/10.3390/polym15173648 - 04 Sep 2023
Cited by 1 | Viewed by 2718
Abstract
Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care [...] Read more.
Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care products in order to maximize the healing outcome and minimize the financial cost. The market of wound dressings is a dynamic field which grows and evolves continuously as a result of extensive research on developing versatile formulations with innovative properties. Hydrogels are one of the most attractive wound care products which, in many aspects, are considered ideal for wound treatment and are widely exploited for extension of their advantages in healing process. Smart hydrogels (SHs) offer the opportunities of the modulation physico-chemical properties of hydrogels in response to external stimuli (light, pressure, pH variations, magnetic/electric field, etc.) in order to achieve innovative behavior of their three-dimensional matrix (gel–sol transitions, self-healing and self-adapting abilities, controlled release of drugs). The SHs response to different triggers depends on their composition, cross-linking method, and manufacturing process approach. Both native or functionalized natural and synthetic polymers may be used to develop stimuli-responsive matrices, while the mandatory characteristics of hydrogels (biocompatibility, water permeability, bioadhesion) are preserved. In this review, we briefly present the physiopathology and healing mechanisms of chronic wounds, as well as current therapeutic approaches. The rational of using traditional hydrogels and SHs in wound healing, as well as the current research directions for developing SHs with innovative features, are addressed and discussed along with their limitations and perspectives in industrial-scale manufacturing. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

27 pages, 15449 KiB  
Review
New Opportunities for Organic Semiconducting Polymers in Biomedical Applications
by Kyunghun Kim, Hocheon Yoo and Eun Kwang Lee
Polymers 2022, 14(14), 2960; https://doi.org/10.3390/polym14142960 - 21 Jul 2022
Cited by 19 | Viewed by 2980
Abstract
The life expectancy of humans has been significantly elevated due to advancements in medical knowledge and skills over the past few decades. Although a lot of knowledge and skills are disseminated to the general public, electronic devices that quantitatively diagnose one’s own body [...] Read more.
The life expectancy of humans has been significantly elevated due to advancements in medical knowledge and skills over the past few decades. Although a lot of knowledge and skills are disseminated to the general public, electronic devices that quantitatively diagnose one’s own body condition still require specialized semiconductor devices which are huge and not portable. In this regard, semiconductor materials that are lightweight and have low power consumption and high performance should be developed with low cost for mass production. Organic semiconductors are one of the promising materials in biomedical applications due to their functionalities, solution-processability and excellent mechanical properties in terms of flexibility. In this review, we discuss organic semiconductor materials that are widely utilized in biomedical devices. Some advantageous and unique properties of organic semiconductors compared to inorganic semiconductors are reviewed. By critically assessing the fabrication process and device structures in organic-based biomedical devices, the potential merits and future aspects of the organic biomedical devices are pinpointed compared to inorganic devices. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Graphical abstract

14 pages, 1698 KiB  
Review
Surveying the Oral Drug Delivery Avenues of Novel Chitosan Derivatives
by Iyyakkannu Sivanesan, Shadma Tasneem, Nazim Hasan, Juhyun Shin, Manikandan Muthu, Judy Gopal and Jae-Wook Oh
Polymers 2022, 14(11), 2131; https://doi.org/10.3390/polym14112131 - 24 May 2022
Cited by 3 | Viewed by 1874
Abstract
Chitosan has come a long way in biomedical applications: drug delivery is one of its core areas of imminent application. Chitosan derivatives are the new generation variants of chitosan. These modified chitosans have overcome limitations and progressed in the area of drug delivery. [...] Read more.
Chitosan has come a long way in biomedical applications: drug delivery is one of its core areas of imminent application. Chitosan derivatives are the new generation variants of chitosan. These modified chitosans have overcome limitations and progressed in the area of drug delivery. This review briefly surveys the current chitosan derivatives available for biomedical applications. The biomedical applications of chitosan derivatives are revisited and their key inputs for oral drug delivery have been discussed. The limited use of the vast chitosan resources for oral drug delivery applications, speculated to be probably due to the interdisciplinary nature of this research, is pointed out in the discussion. Chitosan-derivative synthesis and practical implementation for oral drug delivery require distinct expertise from chemists and pharmacists. The lack of enthusiasm could be related to the inadequacy in the smooth transfer of the synthesized derivatives to the actual implementers. With thiolated chitosan derivatives predominating the oral delivery of drugs, the need for representation from the vast array of ready-to-use chitosan derivatives is emphasized. There is plenty to explore in this direction. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

37 pages, 3153 KiB  
Review
Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications
by Elham Khadem, Mahshid Kharaziha, Hamid Reza Bakhsheshi-Rad, Oisik Das and Filippo Berto
Polymers 2022, 14(9), 1709; https://doi.org/10.3390/polym14091709 - 22 Apr 2022
Cited by 6 | Viewed by 3401
Abstract
With the advent of “intelligent” materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing [...] Read more.
With the advent of “intelligent” materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015–2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Figure 1

24 pages, 1734 KiB  
Review
Polymeric Dental Nanomaterials: Antimicrobial Action
by Pavel Yudaev, Vladimir Chuev, Bogdan Klyukin, Andrey Kuskov, Yaroslav Mezhuev and Evgeniy Chistyakov
Polymers 2022, 14(5), 864; https://doi.org/10.3390/polym14050864 - 22 Feb 2022
Cited by 22 | Viewed by 5306
Abstract
This review aims to describe and critically analyze studies published over the past four years on the application of polymeric dental nanomaterials as antimicrobial materials in various fields of dentistry. Nanoparticles are promising antimicrobial additives to restoration materials. According to published data, composites [...] Read more.
This review aims to describe and critically analyze studies published over the past four years on the application of polymeric dental nanomaterials as antimicrobial materials in various fields of dentistry. Nanoparticles are promising antimicrobial additives to restoration materials. According to published data, composites based on silver nanoparticles, zinc(II), titanium(IV), magnesium(II), and copper(II) oxide nanoparticles, chitosan nanoparticles, calcium phosphate or fluoride nanoparticles, and nanodiamonds can be used in dental therapy and endodontics. Composites with nanoparticles of hydroxyapatite and bioactive glass proved to be of low efficiency for application in these fields. The materials applicable in orthodontics include nanodiamonds, silver nanoparticles, titanium(IV) and zinc(II) oxide nanoparticles, bioactive glass, and yttrium(III) fluoride nanoparticles. Composites of silver nanoparticles and zinc(II) oxide nanoparticles are used in periodontics, and nanodiamonds and silver, chitosan, and titanium(IV) oxide nanoparticles are employed in dental implantology and dental prosthetics. Composites based on titanium(IV) oxide can also be utilized in maxillofacial surgery to manufacture prostheses. Composites with copper(II) oxide nanoparticles and halloysite nanotubes are promising materials in the field of denture prosthetics. Composites with calcium(II) fluoride or phosphate nanoparticles can be used in therapeutic dentistry for tooth restoration. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop