polymers-logo

Journal Browser

Journal Browser

Fiber and Polymer Composites: Processing, Simulation, Properties and Applications, 3rd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Fibers".

Deadline for manuscript submissions: 30 May 2025 | Viewed by 6749

Special Issue Editor

Polymers Department, Nanocomposite Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
Interests: synthetic/natural nanofillers; synthetic/natural polymer (nano)composites; bio-based thermoplastics; melt processing; polymer masterbatches; automotive/packaging/biomedicine applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer composites reinforced with fibers are a promising alternative to metal parts and the solution for light construction materials. Due to their exceptional properties (flexibility, functionality and formability in complicated design parts), fiber-reinforced polymer composites have found applications in many industrial fields (construction, automobile, aerospace), biomedicine, marine and others. The performance of the polymeric composite material mainly depends on the nature of the components, the degree of interaction between the components and the processing technology.

The purpose of this Special Issue is to highlight the latest original results in the development of composite materials based on synthetic and/or natural polymers and synthetic and/or natural fibers, with improved properties imposed by various applications.

Dr. Zina Vuluga
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • synthetic and/or natural fibers
  • synthetic and/or natural polymers
  • polymer composites
  • processing technology
  • modelling, simulation and optimization
  • properties
  • applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

37 pages, 14520 KiB  
Article
Computational and Experimental Ballistic Behavior of Epoxy Composites Reinforced with Carnauba Fibers: A Stand-Alone Target and Multilayered Armor System
by Raí Felipe Pereira Junio, Bernardo Soares Avila de Cêa, Douglas Santos Silva, Édio Pereira Lima Júnior, Sergio Neves Monteiro and Lucio Fabio Cassiano Nascimento
Polymers 2025, 17(4), 534; https://doi.org/10.3390/polym17040534 - 19 Feb 2025
Cited by 1 | Viewed by 536
Abstract
The development of efficient and sustainable armor systems is crucial for protecting bodies and vehicles. In this study, epoxy composites reinforced with natural lignocellulosic fibers (NLFs) from carnauba (Copernicia prunifera) were produced with 0, 10, 20, 30, and 40% fiber volume [...] Read more.
The development of efficient and sustainable armor systems is crucial for protecting bodies and vehicles. In this study, epoxy composites reinforced with natural lignocellulosic fibers (NLFs) from carnauba (Copernicia prunifera) were produced with 0, 10, 20, 30, and 40% fiber volume fractions. Their ballistic performance was evaluated by measuring residual velocity and absorbed energy after impact with 7.62 mm ammunition, as well as their application in a multilayer armor system (MAS). Scanning electron microscopy (SEM) was used to analyze fracture regions, and explicit dynamic simulations were performed for comparison with experimental tests. Residual velocity tests indicated a limit velocity (VL) between 213 and 233 m/s and absorbed energy (Eabs) between 221 and 264 J, surpassing values reported for aramid fabric. All formulations showed indentation depths below the National Institute of Justice (NIJ) limit, with the 40% fiber sample achieving the lowest depth (31.2 mm). The simulation results correlated well with the experimental data, providing insight into deformation mechanisms during a level III ballistic event. These findings demonstrate the high potential of carnauba fibers in epoxy-based polymer composites, particularly as an intermediate layer in MAS, offering a sustainable alternative for ballistic protection. Full article
Show Figures

Figure 1

18 pages, 3525 KiB  
Article
The Development of a Non-Pneumatic Tire Concept Based on a Fiber-Reinforced Epoxy Composite
by Jonathan Andrä, Tales de Vargas Lisboa and Axel Spickenheuer
Polymers 2025, 17(4), 505; https://doi.org/10.3390/polym17040505 - 15 Feb 2025
Cited by 1 | Viewed by 485
Abstract
This paper investigates the use of glass and carbon fiber-reinforced polymer composites with epoxy matrices for non-pneumatic tires (NPTs), as an alternative to conventional elastomer-based designs. A novel NPT design approach was developed in three steps: (i) a finite element model with isotropic [...] Read more.
This paper investigates the use of glass and carbon fiber-reinforced polymer composites with epoxy matrices for non-pneumatic tires (NPTs), as an alternative to conventional elastomer-based designs. A novel NPT design approach was developed in three steps: (i) a finite element model with isotropic material properties was constructed to identify suitable spoke geometries; (ii) an anisotropic parametric study quantified key parameters influencing the load-bearing capability of two selected concepts from step (i); and (iii) a preferred version was chosen from step (ii) and evaluated under multiple load cases to ensure it met all requirements. The final tire design incorporates thick spiral spokes superimposed with a cosine-like function, showcasing the strengths and limitations of non-elastomeric reinforced polymers for NPT design. This study provides innovative insights into reducing the mass of NPTs and demonstrates the potential of fiber-reinforced polymer composites to achieve more lightweight, durable, and efficient NPT designs in comparison to pneumatic ones. Full article
Show Figures

Figure 1

15 pages, 3182 KiB  
Article
Optimization of Compression Molding Parameters and Lifecycle Carbon Impact Assessment of Bamboo Fiber-Reinforced Polypropylene Composites
by Wei Li, Tao Feng, Tongyuan Lu, Feng Zhao, Jialong Zhao, Wei Guo and Lin Hua
Polymers 2024, 16(23), 3435; https://doi.org/10.3390/polym16233435 - 6 Dec 2024
Viewed by 1356
Abstract
Driven by global carbon neutrality goals, bamboo fiber-reinforced PP composites have shown significant potential for automotive applications due to their renewability, low carbon emissions, and superior mechanical properties. However, the environmental complexities associated with compression molding process parameters, which impact material properties and [...] Read more.
Driven by global carbon neutrality goals, bamboo fiber-reinforced PP composites have shown significant potential for automotive applications due to their renewability, low carbon emissions, and superior mechanical properties. However, the environmental complexities associated with compression molding process parameters, which impact material properties and carbon emissions, pose challenges for large-scale adoption. This study systematically optimized the compression molding process of bamboo fiber-reinforced PP composites through a three-factor, five-level experimental design, focusing on preheating temperature, preheating time, and holding time. Additionally, an innovative life cycle assessment (LCA) was conducted to evaluate the environmental impact. The results indicated that at a preheating temperature of 220 °C, preheating time of 210–240 s, and holding time of 40–50 s, the material achieved a tensile strength of 35 MPa and a flexural strength of 45 MPa, with a 15% reduction in water absorption. The LCA further highlighted energy consumption, the compression molding process, and material composition as the primary contributors to carbon emissions and environmental impacts, identifying key areas for future optimization. This study provides an optimized framework for compression molding bamboo fiber-reinforced PP composites and establishes a theoretical foundation for their low-carbon application in the automotive industry. Future work will explore the optimization of bamboo fiber content and process parameters to further enhance material performance and reduce environmental impact. Full article
Show Figures

Figure 1

11 pages, 7029 KiB  
Article
Meter-Scale Long Connectorized Paper-like Polymer Waveguide Film for 100 Gbps Board-Level Optical Interconnects Application
by Xu Liu, Lin Ma, Ying Shi, Qiancheng Yu, Motoya Kaneta, Xu Sun and Zuyuan He
Polymers 2024, 16(23), 3350; https://doi.org/10.3390/polym16233350 - 29 Nov 2024
Cited by 1 | Viewed by 881
Abstract
We design and fabricate meter-scale long connectorized paper-like flexible multimode polymer waveguide film with a large bandwidth-length product (BLP) for board-level optical interconnects application. The measured BLP of the multimode waveguide is greater than 57.3 GHz·m at a wavelength of 850 nm under [...] Read more.
We design and fabricate meter-scale long connectorized paper-like flexible multimode polymer waveguide film with a large bandwidth-length product (BLP) for board-level optical interconnects application. The measured BLP of the multimode waveguide is greater than 57.3 GHz·m at a wavelength of 850 nm under the strictest overfilled launch condition with a maximum length of 2.1 m and 10-dB insertion loss. The fabricated waveguide films are as flexible as regular printing paper and can be conveniently interfaced with standard mechanically transferable (MT) fiber connectors with low loss. The average insertion loss of the connectorized waveguide is about 0.042 dB/cm with inter-channel crosstalk as low as −46.4 dB, and the bending loss is less than 1 dB at a bending radius of 1 mm under the overfilled launch condition. We also demonstrate a vertical-cavity surface-emitting laser (VCSEL)-based single-lane 100 Gbps PAM4 transmission. Our results show that the meter-scale long paper-like polymer waveguide film has both excellent optical properties and large bandwidth and is ideal for high-speed board-level optical interconnects application with a single-lane data rate of 100 Gbps and beyond, especially those that have a strict requirement on the length of connection and compactness. Full article
Show Figures

Figure 1

17 pages, 4657 KiB  
Article
The Influence of Background Materials on the Radiative Cooling Performance of Semi-Transparent and Opaque Textiles: A Theoretical and Experimental Analysis
by Lea Zimmermann, Ablimit Aili, Thomas Stegmaier, Cigdem Kaya and Götz T. Gresser
Polymers 2024, 16(16), 2264; https://doi.org/10.3390/polym16162264 - 9 Aug 2024
Cited by 2 | Viewed by 1559
Abstract
This paper investigates the theoretical and experimental cooling performance of textile materials utilizing radiative cooling technology. By applying Kirchhoff’s law, the emissivity of surfaces is determined, revealing that materials with high transmission values can achieve comparable cooling performance to those with high reflection [...] Read more.
This paper investigates the theoretical and experimental cooling performance of textile materials utilizing radiative cooling technology. By applying Kirchhoff’s law, the emissivity of surfaces is determined, revealing that materials with high transmission values can achieve comparable cooling performance to those with high reflection values. Notably, materials exhibiting moderate reflectance and transmittance in the solar range tend to absorb minimal solar radiation, thus offering high theoretical cooling performance. However, practical applications like building envelopes or clothing present challenges due to the impact of background radiation on overall cooling capacity. Despite their intrinsic cooling properties, a significant portion of solar radiation is transmitted, complicating matters as the background can significantly affect overall cooling performance. This study provides a solution that accounts for the influence of background materials. Based on spectral data, various background materials and their impact on different semi-transparent comparison materials can be considered, and cooling performance can be simulated. This enables the simulation of cooling performance for various application scenarios and facilitates comparisons between transparent, semi-transparent, and opaque textile materials. Full article
Show Figures

Figure 1

21 pages, 2082 KiB  
Article
The Potential Valorization of Corn Stalks by Alkaline Sequential Fractionation to Obtain Papermaking Fibers, Hemicelluloses, and Lignin—A Comprehensive Mass Balance Approach
by Adrian Cătălin Puițel, Georgiana Bălușescu, Cătălin Dumitrel Balan and Mircea Teodor Nechita
Polymers 2024, 16(11), 1542; https://doi.org/10.3390/polym16111542 - 30 May 2024
Cited by 2 | Viewed by 1340
Abstract
The current study deals with an examination of strategies for the sequential treatment of corn stalks (CSs) in an integrated manner aiming to obtain papermaking fibers and to recover both lignin and hemicelluloses (HCs). Several pathways of valorization were experimentally trialed, focusing on [...] Read more.
The current study deals with an examination of strategies for the sequential treatment of corn stalks (CSs) in an integrated manner aiming to obtain papermaking fibers and to recover both lignin and hemicelluloses (HCs). Several pathways of valorization were experimentally trialed, focusing on getting information from mass balance analysis in an attempt to reveal the potential outcomes in terms of pulp yield, chemical composition, and papermaking properties such as tensile and burst strength. The raw lignin amounts and purity as well as separated hemicelluloses were also characterized. In this work, pulp yields in the range of 44–50% were obtained from CSs, while lignin and hemicelluloses yielded maximum values of 10 g/100 g of CS and 6.2 g/100 g of CS, respectively. Other findings of mass balance analysis evidenced that besides the papermaking pulp, the lignin and HCs also have interesting output values. The recovered lignin yield values were shown to be less than 50% in general, meaning that even if 67 to 90% of it is removed from CSs, only about half is recovered. The removal rates of hemicelluloses were found to be in the range of approx. 30 to 60%. About 15 to 25% of the original HCs could be recovered, and polysaccharides-based products with 67 to 75% xylan content could be obtained. Some key opinions were developed regarding how the mass balance could turn as a result of the chosen CS valorization set-up. The determined antioxidant activity showed that both lignin and hemicelluloses had interesting values for IC50. Full article
Show Figures

Figure 1

Back to TopTop