polymers-logo

Journal Browser

Journal Browser

Advanced Electrospinning Fibers II

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Fibers".

Deadline for manuscript submissions: closed (5 December 2024) | Viewed by 6543

Special Issue Editor


E-Mail Website
Guest Editor
Environmental and Population Health Bioscience Division, Environmental and Occupational Health Sciences Institute, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
Interests: nanofibers; electrospining; tissue engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanofibers are superior candidates for various applications due to their high surface-to-volume ratio and porosity. This feature of nanofibers can promote their application in products and make them an ideal architecture for biological, sensor, battery, and filter application. In recent years, the number of publications related to nanofibers has increased, suggesting the importance and impact of nanofibers in various fields. This Special Issue aims to gather high-quality original research works and specialized review articles on a wide range of topics in advanced electrospinning fibers for various applications, including health science, tissue engineering, sensors, and batteries using polymeric nanofibers.

Dr. Davood Kharaghani
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrospinning
  • nanofibers
  • advanced nanofibers
  • tissue engineering
  • sensors
  • batteries
  • filtration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 7905 KiB  
Article
Synergistic Effects of Radical Distributions of Soluble and Insoluble Polymers within Electrospun Nanofibers for an Extending Release of Ferulic Acid
by Ran Dong, Wenjian Gong, Qiuyun Guo, Hui Liu and Deng-Guang Yu
Polymers 2024, 16(18), 2614; https://doi.org/10.3390/polym16182614 - 15 Sep 2024
Cited by 20 | Viewed by 1232
Abstract
Polymeric composites for manipulating the sustained release of an encapsulated active ingredient are highly sought after for many practical applications; particularly, water-insoluble polymers and core–shell structures are frequently explored to manipulate the release behaviors of drug molecules over an extended time period. In [...] Read more.
Polymeric composites for manipulating the sustained release of an encapsulated active ingredient are highly sought after for many practical applications; particularly, water-insoluble polymers and core–shell structures are frequently explored to manipulate the release behaviors of drug molecules over an extended time period. In this study, electrospun core–shell nanostructures were utilized to develop a brand-new strategy to tailor the spatial distributions of both an insoluble polymer (ethylcellulose, EC) and soluble polymer (polyvinylpyrrolidone, PVP) within the nanofibers, thereby manipulating the extended-release behaviors of the loaded active ingredient, ferulic acid (FA). Scanning electron microscopy and transmission electron microscopy assessments revealed that all the prepared nanofibers had a linear morphology without beads or spindles, and those from the coaxial processes had an obvious core–shell structure. X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopic tests confirmed that FA had fine compatibility with EC and PVP, and presented in all the nanofibers in an amorphous state. In vitro dissolution tests indicated that the radical distributions of EC (decreasing from shell to core) and PVP (increasing from shell to core) were able to play their important role in manipulating the release behaviors of FA elaborately. On one hand, the core–shell nanofibers F3 had the advantages of homogeneous composite nanofibers F1 with a higher content of EC prepared from the shell solutions to inhibit the initial burst release and provide a longer time period of sustained release. On the other hand, F3 had the advantages of nanofibers F2 with a higher content of PVP prepared from the core solutions to inhibit the negative tailing-off release. The key element was the water permeation rates, controlled by the ratios of soluble and insoluble polymers. The new strategy based on core–shell structure paves a way for developing a wide variety of polymeric composites with heterogeneous distributions for realizing the desired functional performances. Full article
(This article belongs to the Special Issue Advanced Electrospinning Fibers II)
Show Figures

Graphical abstract

14 pages, 6379 KiB  
Article
PBAT/PLA-Based Electrospun Nanofibrous Protective Clothes with Superhydrophobicity, Permeability, and Thermal Insulation Characteristics for Individuals with Disabilities
by Muhammad Omer Aijaz, Ubair Abdus Samad, Ibrahim A. Alnaser, Md Irfanul Haque Siddiqui, Abdulaziz K. Assaifan and Mohammad Rezaul Karim
Polymers 2024, 16(17), 2469; https://doi.org/10.3390/polym16172469 - 30 Aug 2024
Cited by 2 | Viewed by 1319
Abstract
This study presents the development of multifunctional protective clothing for disabled individuals using PBAT/PLA biopolymeric-based electrospun nanofibrous membranes. The fabric consists of a superhydrophobic electrospun nanofibrous cloth reinforced with silica nanoparticles. The resulting nanofiber membranes were characterized using FE-SEM, a CA goniometer, breathability [...] Read more.
This study presents the development of multifunctional protective clothing for disabled individuals using PBAT/PLA biopolymeric-based electrospun nanofibrous membranes. The fabric consists of a superhydrophobic electrospun nanofibrous cloth reinforced with silica nanoparticles. The resulting nanofiber membranes were characterized using FE-SEM, a CA goniometer, breathability and hydrostatic pressure resistance tests, UV–vis spectroscopy, thermal infrared photography, tensile tests, and nanoindentation. The results demonstrated the integration of superhydrophobicity, breathability, and mechanical improvements in the protective clothing. The nanofibrous porous structure of the fabric allowed breathability, while the silica nanoparticles acted as an effective infrared reflector to keep the wearer cool on hot days. The fabric’s multifunctional properties make it suitable for various products, such as outdoor clothing and accessories for individuals with disabilities. This study highlights the importance of selecting appropriate textiles for protective clothing and the challenges faced by disabled individuals in terms of mobility, eating, and dressing. The innovative and purposeful design of this multifunctional protective clothing aimed to enrich the lives of individuals with disabilities. Full article
(This article belongs to the Special Issue Advanced Electrospinning Fibers II)
Show Figures

Graphical abstract

13 pages, 3547 KiB  
Article
In Vitro and Anti-Inflammatory Activity Evaluation Nanofibers from a Breath Mask and Filter Based on Polyurethane and Polyvinylidene Fluoride
by Kyu oh Kim
Polymers 2023, 15(24), 4650; https://doi.org/10.3390/polym15244650 - 8 Dec 2023
Cited by 2 | Viewed by 1404
Abstract
Nanofiber (NF) products exhibit outstanding performances in materials science, textiles, and medicine that cannot be realized using conventional technologies. However, the safety of such products is debated because of the potential health risks that nanomaterials pose and the lack of standardized guidelines for [...] Read more.
Nanofiber (NF) products exhibit outstanding performances in materials science, textiles, and medicine that cannot be realized using conventional technologies. However, the safety of such products is debated because of the potential health risks that nanomaterials pose and the lack of standardized guidelines for the safety evaluation of NF products. The global safety evaluations of nanomaterials have focused on evaluating the cytotoxicity of low-dimensional materials, including nanoparticles and nanotubes, based on OECD (Organization for Economic Co-operation and Development) criteria. NFs are one-dimensional materials with nanometer diameters and considerable lengths. Many fibers are applied in a densely woven web-like form, so assessing cellular penetration and fiber toxicity using the same methods is inappropriate. This study verifies the safety of the polyurethane (PU) and polyvinylidene fluoride (PVDF) polymers currently applied in filters and masks. To this end, polymer NFs were collected from each product, and the NFs were compared with reference samples using FT-IR and Raman spectroscopy. For the safety evaluation, DMSO stocks of varying concentrations of PVDF and PU NFs (at 0.5, 1, 5, and 10 μg/mL) were prepared. The cytotoxicity and inhibitory effects on nitric oxide production and protein expression obtained via Western blot were identified. Full article
(This article belongs to the Special Issue Advanced Electrospinning Fibers II)
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 4097 KiB  
Review
Application Progress of Multi-Functional Polymer Composite Nanofibers Based on Electrospinning: A Brief Review
by Shuai Ma, An Li and Ligang Pan
Polymers 2024, 16(17), 2459; https://doi.org/10.3390/polym16172459 - 29 Aug 2024
Cited by 3 | Viewed by 1877
Abstract
Nanomaterials are known as the most promising materials of the 21st century, among which nanofibers have become a hot research and development topic in academia and industry due to their high aspect ratio, high specific surface area, high molecular orientation, high crystallinity, excellent [...] Read more.
Nanomaterials are known as the most promising materials of the 21st century, among which nanofibers have become a hot research and development topic in academia and industry due to their high aspect ratio, high specific surface area, high molecular orientation, high crystallinity, excellent mechanical properties, and many other advantages. Electrospinning is the most important preparation method for nanofibers and their thin membranes due to its controllability, versatility, low cost, and simplicity. Adding nanofillers such as ceramics, metals, and carbon materials to the electrospinning polymer solutions to prepare composites can further improve the mechanical strength and multi-functionality of nanofibers and their thin membranes and also provide possibilities for their widespread applications. Based on the rapid development in the field of polymer composite nanofibers, this review focuses on polyurethane (PU)-based composite nanofibers as the main representative and reviews their latest practical applications in many fields such as sound-absorbing materials, biomedical materials (including tissue engineering implants, drug delivery systems, wound dressings and other anti-bacterial materials, health materials, etc.), wearable sensing devices and energy harvesters, adsorbent materials, electromagnetic shielding materials, and reinforcement materials. Finally, a summary of their performance–application relationship and prospects for further development are given. This review is expected to provide some practical experience and theoretical guidance for further developments in related fields. Full article
(This article belongs to the Special Issue Advanced Electrospinning Fibers II)
Show Figures

Figure 1

Back to TopTop