Stress Biology of Turfgrass—2nd Edition

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Horticultural Science and Ornamental Plants".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 6077

Special Issue Editor


E-Mail Website
Guest Editor
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
Interests: forage or ground-cover plant in response to abiotic stresses such as heat or cold stress, drought, and ionic stress (salt, aluminum, or cadmium); turf management; stress-defensive gene and protein; omics study; signal transduction; gene function; phytohormone; plant growth regulator
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Turfgrass is widely used for landscaping, sports turf, and ecological restoration. However, environmental stresses including abiotic and biotic stresses decrease turf quality and also increase the costs of turf maintenance. This Special Issue will be focused on the physiological, metabolic, and molecular mechanisms of turfgrasses in response to abiotic stresses, such as drought, heat, cold, or ionic stress (salt, aluminum, and cadmium), as well as biotic stresses, including insects, parasites, viruses, fungi, and bacteria. Transgenic technology and omics studies based on ionomics, metabolomics, proteomics, or transcriptomics are important approaches to reveal adaptive responses to abiotic and biotic stresses in turfgrass species. In addition, improved knowledge of turf maintenance and management in the field, during environmental stress associated with new technologies and mechanisms, will be included.

The current research topic aims to collect research and review articles involved in, but not limited to, the following:

  • Antioxidant defense systems and reactive oxygen species in turfgrass in response to abiotic and biotic stress;
  • The effects of phytohormones and plant growth regulators in turfgrass exposed to stress;
  • The roles of secondary metabolites in turfgrass under stress conditions;
  • Signal transduction and metabolic pathways affected by stress in turfgrass;
  • Key genes and proteins associated with stress tolerance in turfgrass, including transcriptomic and proteomic studies.

Prof. Dr. Zhou Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic and biotic stresses
  • stress physiology
  • defense mechanism
  • antioxidant
  • metabolic regulation
  • water homeostasis
  • photosynthesis
  • omics
  • stress-defensive genes and pro-teins

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 6282 KiB  
Article
Water Translocation and Photosynthetic Responses in Clones of Kentucky Bluegrass to Heterogeneous Water Supply
by Jia Jiang, Chen Wang, Along Chen, Fuchun Xie and Yajun Chen
Plants 2025, 14(5), 826; https://doi.org/10.3390/plants14050826 - 6 Mar 2025
Viewed by 430
Abstract
Drought stress is the most common threat to plant growth, while physiological integration can significantly enhance the drought tolerance of clonal plants, making it essential to research the behavior of clones under drought conditions and explore the potential applications of clonal plants. This [...] Read more.
Drought stress is the most common threat to plant growth, while physiological integration can significantly enhance the drought tolerance of clonal plants, making it essential to research the behavior of clones under drought conditions and explore the potential applications of clonal plants. This study applied polyethylene-glycol-6000-induced stress to proximal, middle and distal clonal ramets of Kentucky bluegrass (Poa pratensis L.) and used an isotope labeling technique to evaluate the water physiological integration and photosynthetic capacity. When the proximal ramet was subjected to drought stress treatment, the decrease in 2H isotopes in the roots from 4 h to 6 h was significantly smaller than the increase in 2H isotopes in their own leaves. Additionally, the reductions in δ2H values of middle and distal ramets roots were 4.14 and 2.6 times greater, respectively, than the increases in their respective leaf δ2H values. The results indicate that under drought stress, water physiological integration was observed among different clonal ramets. In addition, drought stress inhibits the photosynthetic-related indicators in clonal ramets, with varying degrees of response and trends in photosynthetic characteristics among different clonal ramets. The proximal ramet treatment group, treated with polyethylene glycol 6000, was most affected by drought stress, while the distal ramet treatment group was least affected. The proximal ramet treatment group, treated with polyethylene glycol 6000, showed a decrease in water use efficiency after 6 h of drought treatment, while the other groups exhibited some increase. This indicates differences in water utilization and regulation among the different clonal ramets under drought stress. This study holds significant theoretical importance for exploring the characteristics of physiological integration and the photosynthetic mechanisms of Kentucky bluegrass clones under drought stress. Full article
(This article belongs to the Special Issue Stress Biology of Turfgrass—2nd Edition)
Show Figures

Figure 1

18 pages, 4006 KiB  
Article
Effect of Exogenous γ-Aminobutyric Acid (GABA) on the Growth, Photosynthetic Pigment, Antioxidant and GABA Metabolism of Festuca arundinacea (Tall Fescues) Under Cadmium Stress
by Wan Geng, Yangyang Zhang, Caihua Li, Guilong Song and Shengqing Shi
Plants 2025, 14(3), 383; https://doi.org/10.3390/plants14030383 - 27 Jan 2025
Viewed by 942
Abstract
γ-Aminobutyric acid (GABA), an endogenous amino acid widely found in living organisms, has important functions in plants such as regulating growth and development, maintaining carbon and nitrogen nutrient balance, and coping with adversity. In this study, we investigated the effects of exogenous 0.5 [...] Read more.
γ-Aminobutyric acid (GABA), an endogenous amino acid widely found in living organisms, has important functions in plants such as regulating growth and development, maintaining carbon and nitrogen nutrient balance, and coping with adversity. In this study, we investigated the effects of exogenous 0.5 mmol/L GABA on the growth, antioxidant metabolism, and GABA shunt metabolism of tall fescue under 20 μmol/L Cd stress, using tall fescue (Festuca arundinacea) ‘Ruby II’ under hydroponics conditions. The results showed that (1) applying GABA for 3, 7, 11, and 15 d under Cd stress inhibited Cd transport from roots to leaves and promoted plant height, alleviating the effects of Cd stress on plant growth. (2) Exogenous 0.5 mmol/L GABA had an interesting regulatory effect on the activation of the antioxidant enzyme system induced by stress at different stages, which was accompanied by a decrease in malondialdehyde (MDA) contents and alleviated the degree of cell membrane lipid peroxidation under cadmium stress. Specifically, peroxidase (POD) enzyme activity reactions initially responded on the 3rd and 7th days of stress, and the changes in catalase (CAT) enzyme activities concentrated on the 11th and 15th days of the later stage. Ascorbate peroxidase (APX) enzyme was active throughout the whole stress period in the roots. Multiple factorial analyses further proved that the antioxidant pathway strongly influenced the survival and growth of tall fescue under stress in the presence of GABA. (3) Application of exogenous GABA activated the branching pathway for GABA synthesis from Glu decarboxylation (GABA shunt) with a higher contribution in the leaves, which induced changes in glutamate content, and plants maintained a higher endogenous GABA content and signal to regulate the plant antioxidant system and reduce cell membrane damage, thus improving the tolerance of plants to Cd stress. Full article
(This article belongs to the Special Issue Stress Biology of Turfgrass—2nd Edition)
Show Figures

Figure 1

17 pages, 14602 KiB  
Article
Trade-Off Between Enzymatic Antioxidant Defense and Accumulation of Organic Metabolite Affects Salt Tolerance of White Clover Associated with Redox, Water, and Metabolic Homeostases
by Min Zhou, Yuting Wu, Yuchen Yang, Yan Yuan, Junnan Lin, Long Lin and Zhou Li
Plants 2025, 14(2), 145; https://doi.org/10.3390/plants14020145 - 7 Jan 2025
Viewed by 897
Abstract
White clover (Trifolium repens) is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application. This study aims to [...] Read more.
White clover (Trifolium repens) is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application. This study aims to investigate the difference in the mechanism of salt tolerance in relation to osmotic adjustment, enzymatic and nonenzymatic antioxidant defenses, and organic metabolites remodeling between salt-tolerant PI237292 (Trp004) and salt-sensitive Korla (KL). Results demonstrated that salt stress significantly induced chlorophyll loss, water imbalance, and accumulations of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2.−), resulting in reduced cell membrane stability in two types of white clovers. However, Trp004 maintained significantly higher leaf relative water content and chlorophyll content as well as lower osmotic potential and oxidative damage, compared with KL under salt stress. Although Trp004 exhibited significantly lower activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, monodehydroasorbate reductase, dehydroascorbate reductase, and glutathione reductase than KL in response to salt stress, significantly higher ascorbic acid (ASA), dehydroascorbic acid (DHA), glutathione (GSH), glutathione disulfide (GSSG), ASA/DHA, and GSH/GSSG were detected in Trp004. These findings indicated a trade-off relationship between antioxidant enzymes and nonenzymatic antioxidants in different white clover genotypes adapting to salt stress. In addition, Trp004 accumulated more organic acids (glycolic acid, succinic acid, fumaric acid, malic acid, linolenic acid, and cis-sinapic acid), amino acids (serine, l-allothreonine, and 4-aminobutyric acid), sugars (tagatose, fructose, glucoheptose, cellobiose, and melezitose), and other metabolites (myo-inositol, arabitol, galactinol, cellobiotol, and stigmasterol) than KL when they suffered from the same salt concentration and duration of stress. These organic metabolites helped to maintain osmotic adjustment, energy supply, reactive oxygen species homeostasis, and cellular metabolic homeostasis with regard to salt stress. Trp004 can be used as a potential resource for cultivating in salinized soils. Full article
(This article belongs to the Special Issue Stress Biology of Turfgrass—2nd Edition)
Show Figures

Figure 1

17 pages, 4954 KiB  
Article
Elucidating the Underlying Allelopathy Effects of Euphorbia jolkinii on Arundinella hookeri Using Metabolomics Profiling
by Xue Xiao, Zuyan Ma, Kai Zhou, Qiongmei Niu, Qin Luo, Xin Yang, Xiaohui Chu and Guilian Shan
Plants 2025, 14(1), 123; https://doi.org/10.3390/plants14010123 - 3 Jan 2025
Viewed by 752
Abstract
Euphorbia jolkinii dominates the subalpine meadows in Shangri-La (Southwest China) owing to its potent allelopathic effects. However, the effects underlying its allelopathy require further characterization at the physiological and molecular levels. In this study, the physiological, biochemical, and metabolic mechanisms underlying E. jolkinii [...] Read more.
Euphorbia jolkinii dominates the subalpine meadows in Shangri-La (Southwest China) owing to its potent allelopathic effects. However, the effects underlying its allelopathy require further characterization at the physiological and molecular levels. In this study, the physiological, biochemical, and metabolic mechanisms underlying E. jolkinii allelopathy were investigated using Arundinella hookeri as a receptor plant. The treatment of A. hookeri seedlings with E. jolkinii aqueous extract (EJAE) disrupted their growth by inhibiting photosynthesis, disrupting oxidation systems, and increasing soluble sugar accumulation and chlorophyll synthesis. Collectively, this causes severe impairment accompanied by abnormal photosynthesis and reduced biomass accumulation. Moreover, EJAE treatment suppressed gibberellin, indoleacetic acid, zeatin, salicylic acid, and jasmonic acid levels while promoting abscisic acid accumulation. Further metabolomic analyses identified numerous differentially abundant metabolites primarily enriched in the α-linolenic, phenylpropanoid, and flavonoid biosynthesis pathways in EJAE-treated A. hookeri seedlings. This study demonstrated that E. jolkinii exhibits potent and comprehensive allelopathic effects on receptor plants, including a significant disruption of endogenous hormone synthesis, the inhibition of photosynthesis, an impairment of membrane and oxidation systems, and changes in crucial metabolic processes associated with α-linolenic, phenylpropanoid, and flavonoid biosynthesis. Thus, our study provides a solid theoretical foundation for understanding the regulatory mechanisms underlying E. jolkinii allelopathy. Full article
(This article belongs to the Special Issue Stress Biology of Turfgrass—2nd Edition)
Show Figures

Figure 1

21 pages, 9969 KiB  
Article
Genome-Wide Identification and Expression Profiling of the SPL Transcription Factor Family in Response to Abiotic Stress in Centipedegrass
by Dandan Kong, Maotao Xu, Siyu Liu, Tianqi Liu, Boyang Liu, Xiaoyun Wang, Zhixiao Dong, Xiao Ma, Junming Zhao and Xiong Lei
Plants 2025, 14(1), 62; https://doi.org/10.3390/plants14010062 - 28 Dec 2024
Viewed by 655
Abstract
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a critical role in the regulation of gene expression and are indispensable in orchestrating plant growth and development while also improving resistance to environmental stressors. Although it has been identified across a wide array of plant [...] Read more.
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a critical role in the regulation of gene expression and are indispensable in orchestrating plant growth and development while also improving resistance to environmental stressors. Although it has been identified across a wide array of plant species, there have been no comprehensive studies on the SPL gene family in centipedegrass [Eremochloa ophiuroides (Munro) Hack.], which is an important warm-season perennial C4 turfgrass. In this study, 19 potential EoSPL genes in centipedegrass were identified and assigned the names EoSPL1-EoSPL19. Gene structure and motif analysis demonstrated that there was relative consistency among the branches of the phylogenetic tree. Five pairs of segmental duplication events were detected within centipedegrass. Ten EoSPL genes were predicted to be targeted by miR156. Additionally, the EoSPL genes were found to be predominantly expressed in leaves and demonstrated diverse responses to abiotic stress (salt, drought, glufosinate ammonium, aluminum, and cold). This study offers a comprehensive insight into the SPL gene family in centipedegrass, creating a foundation for elucidating the functions of EoSPL genes and investigating their involvement in abiotic stress responses. Full article
(This article belongs to the Special Issue Stress Biology of Turfgrass—2nd Edition)
Show Figures

Figure 1

11 pages, 2547 KiB  
Article
MsFtsH8 Enhances the Tolerance of PEG-Simulated Drought Stress by Boosting Antioxidant Capacity in Medicago sativa L.
by Ruyue Li, Xiangcui Zeng, Xueqian Jiang, Ruicai Long, Fei He, Xue Wang, Lin Chen, Qianwen Yu, Junmei Kang, Qingchuan Yang, Tianhui Yang, Zhongkuan Liu and Mingna Li
Plants 2024, 13(21), 3025; https://doi.org/10.3390/plants13213025 - 29 Oct 2024
Cited by 1 | Viewed by 939
Abstract
Drought is a major abiotic stress that limits the growth and yield of alfalfa, a vital forage legume. The plant metalloproteinase Filamentation temperature-sensitive H (FtsH) is an ATP- and Zn2+-dependent enzyme that plays a significant character in the plant’s response to [...] Read more.
Drought is a major abiotic stress that limits the growth and yield of alfalfa, a vital forage legume. The plant metalloproteinase Filamentation temperature-sensitive H (FtsH) is an ATP- and Zn2+-dependent enzyme that plays a significant character in the plant’s response to environmental stress. However, its functional role in drought resistance remains largely unexplored. This study investigates the drought tolerance role of alfalfa MsFtsH8 by analyzing the growth, physiology, and gene expression of overexpressing plants under drought conditions. The results demonstrated that both MsFtsH8-overexpressing Arabidopsis and alfalfa plants exhibited superior growth condition and enhanced membrane stability. The overexpressing alfalfa plants also showed reduced MDA levels, higher proline content, lower H2O2 accumulation, an increased activity of antioxidant-related enzymes (SOD, POD, and CAT) activity, and an elevated expression of antioxidant-related genes. These results indicated that the overexpression of MsFtsH8 enhanced growth, improved osmotic regulation, reduced ROS levels, and increased antioxidative capacity, ultimately leading to greater drought tolerance in alfalfa. Our findings suggest that MsFtsH8 mitigates oxidative damage caused by drought by modulating the plant’s antioxidant system, thus improving drought tolerance in alfalfa. This study provides a molecular basis and candidate genes for enhancing drought resistance in alfalfa through genetic engineering. Full article
(This article belongs to the Special Issue Stress Biology of Turfgrass—2nd Edition)
Show Figures

Figure 1

17 pages, 4452 KiB  
Article
Comparative Metabolome and Transcriptome Analyses Reveal Molecular Mechanisms Involved in the Responses of Two Carex rigescens Varieties to Salt Stress
by Yiming Wu, Kai Zhu, Chu Wang, Yue Li, Mingna Li and Yan Sun
Plants 2024, 13(21), 2984; https://doi.org/10.3390/plants13212984 - 25 Oct 2024
Cited by 2 | Viewed by 949
Abstract
Salt stress severely inhibits crop growth and production. The native turfgrass species Carex rigescens in northern China, exhibits extraordinary tolerance to multiple abiotic stresses. However, little is known about its specific metabolites and pathways under salt stress. To explore the molecular metabolic mechanisms [...] Read more.
Salt stress severely inhibits crop growth and production. The native turfgrass species Carex rigescens in northern China, exhibits extraordinary tolerance to multiple abiotic stresses. However, little is known about its specific metabolites and pathways under salt stress. To explore the molecular metabolic mechanisms under salt stress, we conducted metabolome analysis combined with transcriptome analysis of two varieties of Carex rigescens with differing salt tolerances: salt-sensitive Lvping NO.1 and salt-tolerant Lvping NO.2. After 5 days of salt treatment, 114 and 131 differentially abundant metabolites (DAMs) were found in Lvping NO.1 and Lvping NO.2, respectively. Among them, six amino acids involved in the amino acid biosynthesis pathway, namely, valine, phenylalanine, isoleucine, tryptophan, threonine, and serine, were accumulated after treatment. Furthermore, most DAMs related to phenylalanine biosynthesis, metabolism, and phenylpropanoid biosynthesis increased under salt stress in both varieties. The expression profiles of metabolism-associated genes were consistent with the metabolic profiles. However, genes including HCT, β-glucosidases, and F5H, and metabolite 4-hydroxycinnamic acid, of the two varieties may account for the differences in salt tolerance. Our study provides new insights into the mechanisms underlying salt tolerance in Carex rigescens and reveals potential metabolites and genes to improve crop resilience to saline environments. Full article
(This article belongs to the Special Issue Stress Biology of Turfgrass—2nd Edition)
Show Figures

Figure 1

Back to TopTop