Emerging Trends in Polarization Optics for Biomedical Applications

A special issue of Photonics (ISSN 2304-6732). This special issue belongs to the section "Biophotonics and Biomedical Optics".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 673

Special Issue Editors


E-Mail Website
Guest Editor
School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
Interests: biophysics; biomedical engineering; polarization; orbital angular momentum; laser speckles
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Computer Science Department, Chernivtsi National University, Chernivtsi, Ukraine
Interests: laser polarimetry; polarization interferometry; digital holography

Special Issue Information

Dear Colleagues,

This Special Issue highlights the cutting-edge developments in polarization optics for biomedical applications, showcasing the field's rapid evolution and expanding potential. Recent advancements in polarization-sensitive techniques have revolutionized our ability to non-invasively probe biological tissues, offering unprecedented insights into tissue structure, composition, and function.

The Issue covers a broad spectrum of topics, including novel polarization-based imaging modalities, advanced polarimetric analysis techniques, and innovative applications in disease diagnosis and treatment monitoring. Key areas of focus include (but are not limited to) the following:

  1. High-resolution polarization-sensitive optical coherence tomography for tissue characterization;
  2. Mueller matrix polarimetry for cancer detection and staging;
  3. circular dichroism spectroscopy for protein structure analysis;
  4. polarization-resolved fluorescence microscopy for cellular imaging;
  5. vector beam applications in biomedical imaging and sensing;
  6. machine learning approaches for polarimetric data interpretation.

These emerging trends demonstrate the growing importance of polarization optics in addressing the critical challenges in biomedicine. The Issue also explores the integration of polarization techniques with other imaging modalities, paving the way for multimodal approaches that offer complementary information.

By presenting state-of-the-art research and future directions, this Special Issue serves as a valuable resource for researchers, clinicians, and engineers working at the intersection of optics, photonics, and biomedicine.

Prof. Dr. Igor Meglinski
Prof. Dr. Yuriy A. Ushenko
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Polarization optics
  • Polarization imaging
  • Mueller matrix polarimetry
  • Biomedical optics
  • Orbital Angular Momentum of Light

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

30 pages, 8461 KiB  
Article
Layer-by-Layer Multifractal Scanning of Optically Anisotropic Architectonics of Blood Plasma Films: Fundamental and Applied Aspects
by Alexander Ushenko, Natalia Pavlyukovich, Oksana Khukhlina, Olexander Pavlyukovich, Mykhaylo Gorsky, Iryna Soltys, Alexander Dubolazov, Yurii Ushenko, Olexander Salega, Ivan Mikirin, Jun Zheng, Zhebo Chen and Lin Bin
Photonics 2025, 12(3), 215; https://doi.org/10.3390/photonics12030215 - 28 Feb 2025
Viewed by 327
Abstract
This study focuses on the topographic structure of optical anisotropy maps (theziograms) of dehydrated blood plasma films (facies) to identify and utilize markers for diagnosing self-similarity (multifractality) in the birefringence parameters of supramolecular protein networks. The research is based on the Jones-matrix analytical [...] Read more.
This study focuses on the topographic structure of optical anisotropy maps (theziograms) of dehydrated blood plasma films (facies) to identify and utilize markers for diagnosing self-similarity (multifractality) in the birefringence parameters of supramolecular protein networks. The research is based on the Jones-matrix analytical framework, which describes the formation of polarization-structural speckle fields in polycrystalline blood plasma facies. In the proposed model, algorithms were developed to relate the real and imaginary parts of the complex elements of the Jones matrix to the theziograms of linear and circular birefringence. To experimentally implement these algorithms, a novel optical technology was introduced for polarization-interference registration and phase scanning of the laser speckle field of blood plasma facies. The laser-based Jones-matrix layer-by-layer theziography relies on polarization filtration and the digital recording of interference patterns from microscopic images of blood plasma facies. This process includes digital 2D Fourier reconstruction and phase-by-phase scanning of the object field of complex amplitudes, enabling the acquisition of phase sections of laser polarization-structural speckle field components scattered with varying multiplicities. Jones-matrix images of supramolecular networks, along with their corresponding theziograms of linear and circular birefringence, were obtained for each phase plane. The experimental data derived from laser layer-by-layer Jones-matrix theziography were quantitatively analyzed using two complementary approaches: statistical analysis (central moments of the 1st to 4th orders) and multifractal analysis (spectra of fractal dimension distributions). As a result, the most sensitive markers—namely asymmetry and kurtosis—were identified, highlighting changes in the statistical and scale self-similar structures of the theziograms of linear and circular birefringence in blood plasma facies. The practical aspect of this work is to evaluate the diagnostic potential of the Jones-matrix theziography method for identifying and differentiating changes in the birefringence of supramolecular networks in blood plasma facies caused by the long-term effects of COVID-19. For this purpose, a control group (healthy donors) and three experimental groups of patients, confirmed to have had COVID-19 one-to-three years prior, were formed. Within the framework of evidence-based medicine, the operational characteristics of the method—sensitivity, specificity, and accuracy—were assessed. The method demonstrated excellent accuracy in the differential diagnosis of the long-term effects of COVID-19. This was achieved by statistically analyzing the spectra of fractal dimensions of Jones-matrix theziograms reconstructed in the phase plane of single scattering within the volume of blood plasma facies. Full article
(This article belongs to the Special Issue Emerging Trends in Polarization Optics for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop