Novel Advances in Optical Communications

A special issue of Photonics (ISSN 2304-6732). This special issue belongs to the section "Optical Communication and Network".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 9448

Special Issue Editors


E-Mail Website
Guest Editor
School of Information and Electronions, Beijing Institute of Technology, Beijing, China
Interests: optical fiber communication; optical wireless communication; artificial intelligence in fiber optic communications

E-Mail Website
Guest Editor
School of Information and Electronions, Beijing Institute of Technology, Beijing, China
Interests: ultra-high speed optical transmission system; intelligent optical signal processing technology
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Interests: optical switching network; optical access; earth fusion network
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Since the introduction of low-loss optical fiber and continuously working semiconductor lasers in 1970, optical communication has experienced explosive growth in just a few decades. Various practical optical fiber communication systems have emerged one after another, and their transmission capacities have increased by millions of times. The speed of development is unprecedented. Today, optical fiber communication technology has become the most important part of the world’s information and communication network and has wide application prospects in many fields such as ultra-long-distance telecommunications, mobile communication networks, data centers, cloud computing, radio and television, and military. Currently, human society has entered a new era of information that demands higher requirements for information communication. To provide high-speed, low-delay, large-capacity, low-noise, and low-loss transmission services to meet the ever-growing demand for data communication, optical communication technology is also developing toward the direction of large capacity, low complexity, high flexibility, high reliability, and low cost. In recent years, a large number of emerging technologies and schemes have emerged that constantly promote people’s understanding of the boundaries of communication technology.

The objectives of this Special Issue are to report the advances in optical communications. Topics of interests include, but are not limited to:

Devices, Fibers, and Components:

Fiber Devices, Fiber Lasers and Amplifiers, and Nonlinear Waveguides; Passive Components and Active Components; and Fibers and Propagation Physics.

Systems and Subsystems:

Datacom Systems and Subsystems; Transmission Systems and Subsystems; Free-Space (FSO) and Radio-Over-Fiber (RoF); Fiber-Sensing, Optical Processing, and Microwave Photonics.

Networks and Services:

Access Networks for Fixed and Mobile Applications; Optical Switching for Data Center Networking and High-Performance Computing; Architectures and Algorithms for Metro Networks and Core Networks; and Advances in Developments of Networks and Services.

Dr. Xiaolong Pan
Dr. Li Zhipei
Dr. Fu Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1304 KiB  
Article
Optimal Scanning Pattern for Initial Free-Space Optical-Link Alignment
by Petr Skryja and Peter Barcik
Photonics 2024, 11(6), 540; https://doi.org/10.3390/photonics11060540 - 5 Jun 2024
Viewed by 282
Abstract
Since free-space optical links (especially fully photonic ones) are very challenging to accurately align; scanning algorithms are used for the initial search and alignment of the transceivers. The initial alignment aims to intercept the optical beam so that it hits a position-sensitive detector. [...] Read more.
Since free-space optical links (especially fully photonic ones) are very challenging to accurately align; scanning algorithms are used for the initial search and alignment of the transceivers. The initial alignment aims to intercept the optical beam so that it hits a position-sensitive detector. However, this operation can be very time-consuming (depending on the system parameters, such as transceiver parameters, distance between transceivers, divergence of the transmitter, angle of view of the receiver, etc.). A spiral scan is used as the most widespread pattern for scanning. This article examines the effects of system parameters (e.g., global navigation satellite systems and compass accuracy) on the angular area of uncertainty that must be scanned to find the optical beam. Furthermore, several types of spiral pattern are compared depending on the time of the scan execution and the required number of points for scanning the given uncertainty area. The cut hexagonal spiral scan achieved the best results as it required 18.1% less time than the common spiral scan for the presented transceiver. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

15 pages, 5146 KiB  
Article
A Fast Time Synchronization Method for Large Scale LEO Satellite Networks Based on A Bionic Algorithm
by Yue Xu, Tao Dong, Jie Yin, Ziyong Zhang, Zhihui Liu, Hao Jiang and Jing Wu
Photonics 2024, 11(5), 475; https://doi.org/10.3390/photonics11050475 - 19 May 2024
Viewed by 506
Abstract
A fast time synchronization method for large-scale LEO satellite networks based on a bionic algorithm is proposed. Because the inter-satellite links are continuously established and interrupted due to the relative motion of the satellites, the topology of the LEO satellite networks is time [...] Read more.
A fast time synchronization method for large-scale LEO satellite networks based on a bionic algorithm is proposed. Because the inter-satellite links are continuously established and interrupted due to the relative motion of the satellites, the topology of the LEO satellite networks is time varying. Firstly, according to the ephemeris information in navigation messages, a connection table which records the connections between satellites is generated. Then, based on the connection table, the current satellite network topology is calculated and generated. Furthermore, a bionic algorithm is used to select some satellites as time source nodes and calculate the hierarchy of the clock transmission tree. By taking the minimum level of the time transmission tree as the optimization objective, the time source nodes and the clock stratums of the whole satellite networks are obtained. Finally, the onboard computational center broadcasts the time layer table to all the satellites in the LEO satellite networks and the time synchronization links can be established or recovered fast. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

11 pages, 2375 KiB  
Article
Wide and Deep Learning-Aided Nonlinear Equalizer for Coherent Optical Communication Systems
by Ziyun Jiang, Xinyu Liu and Liuchao Zhang
Photonics 2024, 11(2), 141; https://doi.org/10.3390/photonics11020141 - 1 Feb 2024
Viewed by 864
Abstract
In this study, we developed a wide and deep network-based nonlinear equalizer to compensate for nonlinear impairment in coherent optical communication systems. In our proposed equalizer, the power feature factor and inter-symbol feature sequence in the received signal are analyzed by two combined [...] Read more.
In this study, we developed a wide and deep network-based nonlinear equalizer to compensate for nonlinear impairment in coherent optical communication systems. In our proposed equalizer, the power feature factor and inter-symbol feature sequence in the received signal are analyzed by two combined networks, wide and deep, respectively, so that the information contained in the signal can be fully utilized. We designed an experiment using a 120 Gbit/s 64-quadrature amplitude modulation (64-QAM) coherent optical communication system over a 375 km standard single-mode fiber (SSMF) to verify the performance of the proposed wide and deep network-based nonlinear equalizer. The experimental results showed that the proposed wide and deep network-based nonlinear equalizer achieved better performance at lower complexity compared with the traditional neural network-based nonlinear equalizer. The proposed equalizer significantly improved the equalization effect at a cost of a 0.3% increase in parameters, which indicates the potential of the proposed method for application in coherent optical communication systems. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

18 pages, 6179 KiB  
Article
Geometrically Shaped Odd-Bit QAM Constellations Suitable for Principal Component-Based Phase Estimation
by Xishuo Wang, Kai Lv, Qi Zhang, Lei Zhu and Xiangjun Xin
Photonics 2024, 11(2), 140; https://doi.org/10.3390/photonics11020140 - 1 Feb 2024
Viewed by 810
Abstract
For high-speed optical communication systems, laser phase noise (LPN) stands as a pivotal factor influencing the quality of the received signal. Therefore, the employment of a highly accurate carrier phase recovery (CPR) algorithm at the receiving end is indispensable to ensure the reliability [...] Read more.
For high-speed optical communication systems, laser phase noise (LPN) stands as a pivotal factor influencing the quality of the received signal. Therefore, the employment of a highly accurate carrier phase recovery (CPR) algorithm at the receiving end is indispensable to ensure the reliability of transmission. While a CPR algorithm called principal component-based phase estimation (PCPE) has been proven to be capable of achieving low-complexity and high-performance phase recovery for even-bit quadrature amplitude modulation (QAM) (i.e., square QAM) signals, it is not compatible with traditional cross-shaped odd-bit QAM signals. To circumvent this problem, a signal constellation design scheme based on geometric shaping (GS) is proposed. The pair-wise optimization (PO) algorithm is used to optimize the constellation structure of 32QAM and 128QAM signals in order to obtain results that are compatible with the PCPE algorithm. Monte Carlo simulation results reveal that for odd-bit QAM signals utilizing PCPE for phase recovery, the proposed GS constellations enhance the mutual information (MI) performance across the entire measured signal-to-noise (SNR) range. Moreover, compared with regular 32QAM and 128QAM constellations using the well-known blind phase search (BPS) algorithm, the proposed GS and PCPE scheme can achieve SNR gains of 1.10 dB and 2.59 dB, respectively, when considering the 20% soft-decision forward error correction (SD-FEC) overhead. Verification through commercial simulation software corroborates these findings, demonstrating that the proposed GS constellations are particularly suitable for the PCPE algorithm, especially under conditions of high optical signal-to-noise ratio (OSNR). To the best of our knowledge, this is the first time that the incompatibility between the PCPE algorithm and odd-bit QAM signals has been investigated, and the proposed GS scheme has broadened the application scope of the low-complexity CPR algorithm. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

12 pages, 5422 KiB  
Article
Automatic Power Optimization of a 44 Tbit/s Real-Time Transmission System over 1900 km G.654.E Fiber and Widened C+L Erbium-Doped Fiber Amplifiers Utilizing 400 Gbit/s Transponders
by Anxu Zhang, Yuyang Liu, Lipeng Feng, Huan Chen, Yuting Du, Jun Wu, Kai Lv, Hao Liu, Xia Sheng and Xiaoli Huo
Photonics 2024, 11(1), 88; https://doi.org/10.3390/photonics11010088 - 17 Jan 2024
Viewed by 1016
Abstract
Power unevenness, mainly induced by stimulated Raman scattering, has been a major problem in multi-band transmission systems, especially in the upcoming field-deployed 400 Gbit/s widened C band plus L band system for backbone long-haul and ultra-long-haul scenarios. To reduce the impact of power [...] Read more.
Power unevenness, mainly induced by stimulated Raman scattering, has been a major problem in multi-band transmission systems, especially in the upcoming field-deployed 400 Gbit/s widened C band plus L band system for backbone long-haul and ultra-long-haul scenarios. To reduce the impact of power unevenness, we propose an automatic power optimization (APO) algorithm to guarantee reliable transmission for all channels, especially the channels at short wavelengths. The simulation results show that the power unevenness of output power after 5-span transmission in the C band is up to 11 dB before APO, while after APO is applied, it is greatly improved to less than 1.6 dB. To further investigate the performance of the APO scheme, we conduct a real-time 44 Tbit/s C+L transmission system over 1900 km G.654.E fiber utilizing 400 Gbit/s transponders. The experimental results show that the power unevenness has been effectively compensated from 12 dB to 4 dB in the entire 11 THz range, making the received optical signal-to-noise ratio relatively flat (3.4 dB). Moreover, the capacity and distance product of this system is 83.6 Pbit/s·km (44 Tbit/s × 1900 km), and to the best of our knowledge, this is a record capacity and distance product in the real-time single-mode fiber transmission system. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

15 pages, 2773 KiB  
Article
Terahertz Replica Generation of Ultra-High Data Rate Transmission in an Electro-Optical Semiconductor Optical Amplifier Mach–Zehnder Interferometer System
by Hassan Termos and Ali Mansour
Photonics 2024, 11(1), 83; https://doi.org/10.3390/photonics11010083 - 17 Jan 2024
Viewed by 966
Abstract
This article presents an analysis of an electro-optical up-converter relying on a semiconductor optical amplifier Mach–Zehnder interferometer (SOA-MZI). The pulsed control signal is generated by an optical pulse clock (OPC) with a repetition rate of fs= 19.5 GHz. The intermediate frequency [...] Read more.
This article presents an analysis of an electro-optical up-converter relying on a semiconductor optical amplifier Mach–Zehnder interferometer (SOA-MZI). The pulsed control signal is generated by an optical pulse clock (OPC) with a repetition rate of fs= 19.5 GHz. The intermediate frequency (IF) signal, which carries the modulation format known as quadratic phase shift keying (QPSK) at a frequency fIF, is shifted at the output of the SOA-MZI to high outlet mixing frequencies nfs±fIF, where n represents the harmonic order of the OPC. To examine the characteristics of the sampled QPSK signals, we employ the Virtual Photonics Inc. (VPI) emulator and evaluate them using significate metrics like error vector magnitudes (EVMs), conversion gains, and bit error rates (BERs). The up-mixing process is mainly achieved through the cross-phase modulation (XPM) effect in the SOA-MZI, which operates within a 195.5 GHz ultrahigh frequency (UHF). The electro-optical SOA-MZI up-converter demonstrates consistent uplifting conversion gains across the scope of the output mixing frequencies. The simulated conversion gain deteriorates from 38 dB at 20 GHz to 13 dB at 195.5 GHz. The operational efficiency of the electro-optical SOA-MZI design, employing the standard modulation approach, is also evaluated by measuring the EVM values. The EVM attains a 24% performance level at a data rate of 5 Gbit/s in conjunction with the UHF of 195.5 GHz. To corroborate our results, we compare them with real-world experiments conducted with the UHF of 59 GHz. The maximum frequency range of 1 THz is attained by increasing the OPC repetition rate. Ultimately, through elevating the control frequency to 100 GHz, the generation of terahertz replicas of the 4096-QAM (quadrature amplitude modulation) compound signal becomes achievable at heightened UHF, extending 1 THz, while maintaining a data transmission rate of 120 Gbit/s and upholding exceptional performance characteristics. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

12 pages, 3656 KiB  
Article
A High-Security Probabilistic Constellation Shaping Transmission Scheme Based on Recurrent Neural Networks
by Shuyu Zhou, Bo Liu, Jianxin Ren, Yaya Mao, Xiangyu Wu, Zeqian Guo, Xu Zhu, Zhongwen Ding, Mengjie Wu, Feng Wang, Rahat Ullah, Yongfeng Wu, Lilong Zhao and Ying Li
Photonics 2023, 10(10), 1078; https://doi.org/10.3390/photonics10101078 - 25 Sep 2023
Cited by 1 | Viewed by 844
Abstract
In this paper, a high-security probabilistic constellation shaping transmission scheme based on recurrent neural networks (RNNs) is proposed, in which the constellation point probabilistic distribution is generated based on recurrent neural network training. A 4D biplane fractional-order chaotic system is introduced to ensure [...] Read more.
In this paper, a high-security probabilistic constellation shaping transmission scheme based on recurrent neural networks (RNNs) is proposed, in which the constellation point probabilistic distribution is generated based on recurrent neural network training. A 4D biplane fractional-order chaotic system is introduced to ensure the security performance of the system. The performance of the proposed scheme is verified in a 2 km seven-core optical transmission system. The RNN-trained probabilistic shaping scheme achieves a transmission gain of 1.23 dB compared to the standard 16QAM signal, 0.39 dB compared to the standard Maxwell-Boltzmann (M-B) distribution signal, and a higher net bit rate. The proposed encryption scheme has higher randomness and security than the conventional integer-order chaotic system, with a key space of 10,163. This scheme will have a promising future fiber optic transmission scheme because it combines the efficient transmission and security of fiber optic transmission systems. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

16 pages, 4295 KiB  
Article
High-Capacity Free Space Optics-Based Passive Optical Network for 5G Front-Haul Deployment
by Rahat Ullah, Sibghat Ullah, Waqas A. Imtiaz, Jahangir Khan, Peer Meher Ali Shah, Muhammad Kamran, Jianxin Ren and Shuaidong Chen
Photonics 2023, 10(10), 1073; https://doi.org/10.3390/photonics10101073 - 24 Sep 2023
Cited by 5 | Viewed by 1077
Abstract
With the expansion of Information and Communication Technology, it is important to develop a communication network that can provide high-capacity ubiquitous connectivity. This work proposes an energy-efficient passive optical network (PON) using orthogonal frequency division multiple access (OFDMA) and wavelength division multiplexing (WDM) [...] Read more.
With the expansion of Information and Communication Technology, it is important to develop a communication network that can provide high-capacity ubiquitous connectivity. This work proposes an energy-efficient passive optical network (PON) using orthogonal frequency division multiple access (OFDMA) and wavelength division multiplexing (WDM) to facilitate the dense deployment of radio units (RUs) in a beyond 5G (B5G) communication network. High-speed connectivity is ensured by employing a hybrid PON architecture that includes a combination of free space optics (FSO) links and optical fiber (OF) media to carry OFDM and WDM multiplexed traffic. Furthermore, an optical frequency comb generator (OFCG) is utilized at the transmitter module to generate and leverage the spectrum for transmitting information from baseband units (BBUs) to the RUs situated near the end users. The proposed system is analyzed through (i) simulation analysis using Optisystem for transmission capacity computations and (ii) mathematical analysis to determine the total savings in energy. The simulation analysis shows that the given architecture can carry data across 3 km of FSO medium using 512 subcarriers per BBU transmitting at 10 Gbps of data with QPSK-modulated bit sequence. Additionally, energy efficiency shows that the use of an OFCG cuts the total energy usage by 22% at the transmitter module without negatively impacting the system’s high cardinality and transmission capacity. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

15 pages, 4735 KiB  
Article
Enhancing the Anti-Dispersion Capability of the AO-OFDM System via a Well-Designed Optical Filter at the Transmitter
by Kai Lv, Chao Yu, Hao Liu, Anxu Zhang, Lipeng Feng, Xia Sheng, Yuyang Liu and Xishuo Wang
Photonics 2023, 10(9), 1053; https://doi.org/10.3390/photonics10091053 - 15 Sep 2023
Cited by 3 | Viewed by 843
Abstract
This paper proposes a novel method to improve the anti-dispersion ability of the all-optical orthogonal frequency division multiplexing (AO-OFDM) system. By replacing the Sinc-shaped filter with a Gauss-shaped filter for sub-carrier generation and inserting a cyclic prefix (CP), the impact of dispersion on [...] Read more.
This paper proposes a novel method to improve the anti-dispersion ability of the all-optical orthogonal frequency division multiplexing (AO-OFDM) system. By replacing the Sinc-shaped filter with a Gauss-shaped filter for sub-carrier generation and inserting a cyclic prefix (CP), the impact of dispersion on the system can be significantly mitigated. Formula derivation and numerical analysis of the pulse-shaping function of the AO-OFDM system in the time domain for each cycle indicated that the pulse-shaping function generated by the Gauss-shaped filter was less affected by the dispersion effect than that of the Sinc-shaped filter. Meanwhile, less inter-carrier crosstalk between carriers was also observed. After carrying out system transmission simulations employing these two different filters, we found that the AO-OFDM system based on the Gauss-shaped filter could greatly improve the anti-dispersion ability compared with the system based on a Sinc-shaped filter. When the parameter settings in both schemes were identical, that is, the number of subcarriers was 32 and the power of a single subcarrier was −13 dBm, the bit error rate (BER) of the system based on the proposed Gauss-shaped filter after 60 km SMF transmission was only 1.596 × 10−3, while the BER of the traditional Sinc-shaped filter based system scheme was as high as 8.545 × 10−2. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

13 pages, 4374 KiB  
Article
Hybrid Constellation Shaping 64QAM Based on Hexagonal Lattice of Constellation Subset
by Xiangyu Liu, Qi Zhang, Xiangjun Xin, Yongjun Wang, Feng Tian, Qinghua Tian, Leijing Yang and Yi Zhao
Photonics 2023, 10(9), 1008; https://doi.org/10.3390/photonics10091008 - 4 Sep 2023
Cited by 1 | Viewed by 1111
Abstract
Increasing demand for higher-speed and large-capacity data communications has driven the development of constellation shaping technology. This paper proposes a hybrid constellation shaping scheme for 64-quadrature amplitude modulation (64QAM) based on hexagonal lattice of a constellation subset. The proposed scheme aims to enhance [...] Read more.
Increasing demand for higher-speed and large-capacity data communications has driven the development of constellation shaping technology. This paper proposes a hybrid constellation shaping scheme for 64-quadrature amplitude modulation (64QAM) based on hexagonal lattice of a constellation subset. The proposed scheme aims to enhance the nonlinear tolerance of higher-order modulated signals and further improve the constellation shaping gain. The initial quantitative characterization of the constellation is firstly performed based on the hexagonal lattice structure. Then, the objective function of maximizing constellation figure of merits (CFM) is utilized to determine the position distribution of constellation points, resulting in the generation of the geometric shaping-64QAM (GS-64QAM) signal. Finally, according to concentric hexagonal layers, all constellation points are divided into multiple subsets where points within the same subset are assigned the same probability, and the hybrid shaping-64QAM (HS-64QAM) signal is generated. To validate the effectiveness of the proposed scheme, the experimental verification was demonstrated in a 120 Gbit/s multi-span coherent optical communication system. Experimental results indicate that, at the soft-decision forward error correction threshold, HS-64QAM achieves an optical signal-to-noise ratio (OSNR) gain of 1.9 dB and 4.1 dB over uniform GS-64QAM in back-to-back and 375 km transmission scenarios, respectively. Furthermore, HS-64QAM achieves an OSNR gain of 2.7 dB and 7.6 dB over uniform Square-64QAM in back-to-back and 375 km transmission scenarios, respectively. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

Back to TopTop