High-Speed 2x1 Multiplexer with Carrier-Reservoir Semiconductor Optical Amplifiers
Abstract
:1. Introduction
2. Principle of Operation
2.1. CR-SOA
2.2. AND
2.3. 2x1 MUX
3. Simulation
4. Results and Discussion
5. Comparison
6. Experimental and Scalability Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
CR-SOA | Carrier-Reservoir Semiconductor Optical Amplifier |
MZI | Mach–Zehnder Interferometer |
MUX | Multiplexer |
Gb/s | Gigabits per second |
QF | Quality Factor |
BER | Bit Error Rate |
PhC | Photonic Crystal |
QD-SOA | Quantum Dot Semiconductor Optical Amplifier |
WSC | Wave-Selective Coupler |
OC | Optical Coupler |
CW | Continuous-Wave |
XPM | Cross-Phase Modulation |
OBPF | Optical Bandpass Filter |
S | Selector Signal |
Inverted Selector Signal | |
CR | Contrast Ratio |
References
- Gupta, S.; Boddapati, S.; Sai, C.S.; Sai, B.N. Design of optical logical multiplexer using SOA. Int. J. Recent Technol. Eng. 2019, 7, 1668–16671. [Google Scholar]
- Rao, D.G.S.; Fathima, M.S.; Manjula, P.; Swarnakar, S. Design and optimization of all-optical demultiplexer using photonic crystals for optical computing applications. J. Opt. Comm. 2020, 44, s197–s202. [Google Scholar]
- Rafiee, E.; Afkhami, M. Design of an all-optical compact 2*1 multiplexer based on 2D photonic crystal ring resonators. Opt. Quant. Electron. 2024, 56, 283. [Google Scholar] [CrossRef]
- Parandin, F.; Sheykhian, A. Design and simulation of a 2 × 1 All-Optical multiplexer based on photonic crystals. Opt. Laser Technol. 2022, 151, 108021. [Google Scholar] [CrossRef]
- Das, S.K.; Pahari, N. Implementation of universal logic gates using 2:1 photonic multiplexer (MUX) of electro-optic Mach–Zehnder interferometer. J. Opt. 2024. [Google Scholar] [CrossRef]
- Kumar, M.; Goel, S.; Nahata, P.K.; Nair, N. All optical 2 to 1 multiplexer using optical tree architecture. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; pp. 900–902. [Google Scholar]
- Chanalia, P.; Gupta, A.; Shaina; Bakshi, S. All optical high-speed multiplexer circuit for verification of proposed gates. J. Opt. Commun. 2018, 39, 289–295. [Google Scholar] [CrossRef]
- Fok, M.P.; Prucnal, P.R. Switching based on optical nonlinear effects. In Woodhead Publishing Series in Electronic and Optical Materials, Optical Switches; Woodhead Publishing: Sawston, UK, 2010; pp. 181–205. [Google Scholar]
- Bottacchi, S. Theory and applications of the Mach–Zehnder interferometer: Enabling high-order optical modulation and smart interferometric devices. In Theory and Design of Terabit Optical Fiber Transmission Systems; Cambridge University Press: Cambridge, UK, 2014; pp. 663–761. [Google Scholar]
- Kotb, A.; Zoiros, K.E.; Yap, E.H. Numerical simulation of all-optical header processor using carrier reservoir semiconductor optical amplifiers. J. Opt. 2024. [Google Scholar] [CrossRef]
- Agarwal, V.; Pareek, P.; Singh, L.; Balaji1, B.; Dakua, P.K.; Chaurasia, V. Design and analysis of all-optical header recognition system employing combination of carrier reservoir SOA and conventional SOA. Opt. Quant. Electron. 2024, 56, 83. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Li, W. All-optical latches using carrier reservoir semiconductor optical amplifiers. Opt. Laser Technol. 2023, 157, 108737. [Google Scholar] [CrossRef]
- Agarwal, V.; Pareek, P.; Singh, L.; Balaji1, B.; Dakua, P.K.; Chaurasia, V. Design and analysis of cross-phase modulation based all-optical half subtractor using carrier reservoir semiconductor optical amplifier. Opt. Quant. Electron. 2023, 55, 680. [Google Scholar] [CrossRef]
- Agarwal, V.; Gupta, S.; Balaji, B.; Singh, L. All-optical 4-bit digital to analog converter based on carrier reservoir SOA-Mach Zehnder Interferometer (MZI) configuration. Opt. Quant. Electron. 2023, 55, 724. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Alamer, F.A.; Li, W. All-optical half adder using carrier reservoir semiconductor optical amplifiers at 120 Gb/s. Pramana-J. Phys. 2022, 96, 154. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Q.; Dong, H.; Zhu, G.; Dutta, N.K.; Jaques, J. Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir. IEEE Photon. Technol. Lett. 2006, 18, 196–198. [Google Scholar] [CrossRef]
- Ma, S.; Chen, Z.; Sun, H.; Dutta, N.K. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers. Opt. Express 2010, 18, 6417–6422. [Google Scholar] [CrossRef]
- Kotb, A.; Guo, C. Theoretical demonstration of 250 Gb/s ultrafast all-optical memory using Mach-Zehnder interferometers with quantum-dot semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 7700307. [Google Scholar] [CrossRef]
- Singh, G.; Seehra, A.; Singh, S. Investigations on order and width of RZ super-Gaussian pulse in different WDM systems at 40 Gb/s using dispersion compensating fibers. Optik 2014, 125, 4270–4273. [Google Scholar] [CrossRef]
- Mohs, G.; Furst, C.; Geiger, H.; Fischer, G. Advantages of nonlinear RZ over NRZ on 10 Gb/s single-span links. In Proceedings of the Optical Fiber Communication Conference, Baltimore, MD, USA, 5–10 March 2000; pp. 35–37. [Google Scholar]
- Kotb, A.; Guo, C. 100 Gb/s all-optical multifunctional AND, XOR, NOR, OR, XNOR, and NAND logic gates in a single compact scheme based on semiconductor optical amplifiers. Opt. Laser Technol. 2021, 137, 106828. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, N. Nonlinear effects in optical fibers: Origin, management and applications. Prog. Electromagn. Res. 2007, 73, 249–275. [Google Scholar] [CrossRef]
- Rao, K.M.; Mohanraj, J. Design and analysis of SOA-MZI based optical digital circuits for high speed optical networks. e-Prime—Adv. Electr. Eng. Electron. Energy 2023, 6, 100289. [Google Scholar] [CrossRef]
- Yu, C. Dispersion monitoring in high-speed optical communication systems. In Proceedings of the 2012 21st Annual Wireless and Optical Communications Conference (WOCC), Kaohsiung, Taiwan, 19–20 April 2012; pp. 16–19. [Google Scholar]
- Liu, X.; Wang, Y.; Zhang, J.; Wang, D.; Lv, Y.; Zhang, M.; Jin, B.; Wang, Y. Pulse-modulated Mach–Zehnder interferometer for vibration location. Opt. Commun. 2019, 437, 27–32. [Google Scholar] [CrossRef]
- Smit, M.; van der Tol, J.; Hill, M. Moore’s law in photonics. Laser Photon. Rev. 2011, 6, 1–13. [Google Scholar] [CrossRef]
- Chen, X.; Huo, L.; Zhao, Z.; Zhuang, L.; Lou, C. Study on 100-Gb/s reconfigurable all-optical logic gates using a single semiconductor optical amplifier. Opt. Express 2016, 24, 30245–30253. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, Q.; Dong, H.; Chen, Z.; Dutta, N.K.; Jaques, J.; Piccirilli, A.B. All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. IEEE J. Quant. Electron. 2006, 42, 747. [Google Scholar]
- Kim, J.Y.; Kang, J.M.; Kim, T.Y.; Han, S.K. All-optical multiple logic gates with XOR, NOR, OR and NAND function using parallel SOA-MZI structures: Theory and experiment. J. Lightwave Technol. 2006, 24, 3392–3399. [Google Scholar]
- Zhang, M.; Wang, L.; Ye, P. All-optical XOR logic gates: Technologies and experiment demonstrations. IEEE Commun. Mag. 2005, 43, S19–S24. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhang, S.; Ju, H.; de Waardt, H.; Khoe, G.D.; Dorren, H.J.S.; Lenstra, D. All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electron. Lett. 2005, 41, 1397–1399. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, G.; Chen, H.; Jaques, J.; Leuthold, J.; Piccirilli, A.B.; Dutta, N.K. Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE J. Quant. Electron. 2004, 40, 703. [Google Scholar] [CrossRef]
- Calabretta, N.; Liu, Y.; Huijskens, F.M.; Hill, M.T.; de Waardt, H.; Khoe, G.D.; Dorren, H.J.S. Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier. J. Lightwave Technol. 2004, 22, 372. [Google Scholar] [CrossRef]
- Kim, J.H.; Byun, Y.T.; Jhon, Y.M.; Lee, S.; Woo, D.H.; Kim, S.H. All-optical half adder using semiconductor optical amplifier based devices. Opt. Commun. 2003, 218, 345–349. [Google Scholar] [CrossRef]
- Kang, B.K.; Kim, J.H.; Byun, Y.T.; Lee, S.; Jhon, Y.M.; Woo, D.H.; Yang, J.S.; Kim, S.H.; Park, Y.H.; Yu, B.G. All-optical AND gate using probe and pump signals as the multiple binary points in cross phase modulation. Jpn. J. Appl. Phys. 2002, 41, L568. [Google Scholar] [CrossRef]
- Soto, H.; Diaz, C.A.; Topomondzo, J.; Erasme, D.; Schares, L.; Guekos, G. All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier. IEEE Photon. Technol. Lett. 2002, 14, 498–500. [Google Scholar] [CrossRef]
Symbol | Definition | Value | Unit |
---|---|---|---|
E0 | Pulse energy | 0.8 | pJ |
τFWHM | Pulse width | 1 | ps |
T | Bit period | 8.33 | ps |
K | PRBS length | 127 | - |
λA | Signal A wavelength | 1550 | nm |
λB | Signal B wavelength | 1550 | nm |
λCW | CW wavelength | 1550 | nm |
λS | Selector wavelength | 1500 | nm |
PA | Signal A power | 1 | dB |
PB | Signal B power | 1 | dB |
PCW | CW power | 0 | dB |
PS | Selector power | 1 | dB |
I | Injection current | 300 | mA |
Psat | Saturation power | 30 | mW |
τc | Carrier lifetime | 200 | ps |
τt | Transition lifetime from CR to AR | 5 | ps |
η | Population inversion factor | 0.3 | - |
α | α-factor | 5 | - |
αCH | CH linewidth enhancement factor | 1 | - |
αSHB | SHB linewidth enhancement factor | 0 | - |
εCH | CH nonlinear gain suppression factor | 0.1 | W−1 |
εSHB | SHB nonlinear gain suppression factor | 0.1 | W−1 |
τCH | Temperature relaxation rate | 0.3 | ps |
τSHB | Carrier-carrier scattering rate | 0.1 | ps |
Γ | Confinement factor | 0.3 | - |
ɑ | Differential gain | 10–20 | m2 |
Ntr | Transparency carrier density | 1024 | m−3 |
L | AR length | 500 | μm |
d | AR thickness | 0.3 | μm |
w | AR width | 3 | μm |
G0 | Unsaturated power gain | 30 | dB |
NSP | Spontaneous emission factor | 2 | - |
υ | Optical frequency | 193.55 | THz |
B0 | Optical bandwidth | 2 | nm |
ℏ | Reduced Planck’s constant | 1.05 × 10−34 | J·s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotb, A.; Zoiros, K.E.; Chen, W. High-Speed 2x1 Multiplexer with Carrier-Reservoir Semiconductor Optical Amplifiers. Photonics 2024, 11, 648. https://doi.org/10.3390/photonics11070648
Kotb A, Zoiros KE, Chen W. High-Speed 2x1 Multiplexer with Carrier-Reservoir Semiconductor Optical Amplifiers. Photonics. 2024; 11(7):648. https://doi.org/10.3390/photonics11070648
Chicago/Turabian StyleKotb, Amer, Kyriakos E. Zoiros, and Wei Chen. 2024. "High-Speed 2x1 Multiplexer with Carrier-Reservoir Semiconductor Optical Amplifiers" Photonics 11, no. 7: 648. https://doi.org/10.3390/photonics11070648
APA StyleKotb, A., Zoiros, K. E., & Chen, W. (2024). High-Speed 2x1 Multiplexer with Carrier-Reservoir Semiconductor Optical Amplifiers. Photonics, 11(7), 648. https://doi.org/10.3390/photonics11070648