Advanced Materials Science and Technology in Drug Delivery

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 20 January 2025 | Viewed by 15237

Special Issue Editors


E-Mail Website
Guest Editor
Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
Interests: nanomaterials; drug delivery systems; biomimetic materials; biogenic calcium sources; composite scaffolds
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
Interests: materials science; drug delivery systems; nanomaterials; biomaterials; antimicrobial activity; nanoparticle-mediated drug delivery; natural agents in developing efficient wound dressings; hydroxyapatite and bioglass; mesoporous materials

Special Issue Information

Dear Colleagues,

As Guest Editors, we are pleased to invite you to submit your work to this Special Issue on “Advanced Materials Science and Technology in Drug Delivery”. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following: advanced synthesis methods and technologies for ceramic and/or composite materials; innovative materials used for drug loading and drug delivery; methods of drug loading, gene delivery; delivery of pharmaceutical compounds (both natural and synthetic); porous materials (carriers) for a controlled/modulated release of bioactive compounds or nanoparticles (zeolites, mesoporous silica, hydroxyapatite, clays, metal-organic framework (MoF)-based materials, organic framework with a porous structure such as COFs, etc.); biological evaluation in terms of antimicrobial, antitumoral or anti-inflammatory effect; biocompatibility; cell-proliferation.

Dr. Ionela Andreea Neacsu
Prof. Dr. Ecaterina Andronescu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nano-based drug delivery systems
  • controlled drug release
  • targeted drug delivery systems
  • inorganic nano-carriers for smart drug delivery systems
  • porous carriers
  • gene delivery
  • bio-inspired advanced materials (ceramics, polymers, composites)
  • drug-loaded scaffolds
  • advanced synthesis and processing technology for materials
  • antimicrobial therapies and biofilm modulation
  • anticancer and theranostic nanoparticles

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 5136 KiB  
Article
A Human Feedback Strategy for Photoresponsive Molecules in Drug Delivery: Utilizing GPT-2 and Time-Dependent Density Functional Theory Calculations
by Junjie Hu, Peng Wu, Shiyi Wang, Binju Wang and Guang Yang
Pharmaceutics 2024, 16(8), 1014; https://doi.org/10.3390/pharmaceutics16081014 - 31 Jul 2024
Cited by 1 | Viewed by 831
Abstract
Photoresponsive drug delivery stands as a pivotal frontier in smart drug administration, leveraging the non-invasive, stable, and finely tunable nature of light-triggered methodologies. The generative pre-trained transformer (GPT) has been employed to generate molecular structures. In our study, we harnessed GPT-2 on the [...] Read more.
Photoresponsive drug delivery stands as a pivotal frontier in smart drug administration, leveraging the non-invasive, stable, and finely tunable nature of light-triggered methodologies. The generative pre-trained transformer (GPT) has been employed to generate molecular structures. In our study, we harnessed GPT-2 on the QM7b dataset to refine a UV-GPT model with adapters, enabling the generation of molecules responsive to UV light excitation. Utilizing the Coulomb matrix as a molecular descriptor, we predicted the excitation wavelengths of these molecules. Furthermore, we validated the excited state properties through quantum chemical simulations. Based on the results of these calculations, we summarized some tips for chemical structures and integrated them into the alignment of large-scale language models within the reinforcement learning from human feedback (RLHF) framework. The synergy of these findings underscores the successful application of GPT technology in this critical domain. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Figure 1

20 pages, 7014 KiB  
Article
Amorphous Polymer–Phospholipid Solid Dispersions for the Co-Delivery of Curcumin and Piperine Prepared via Hot-Melt Extrusion
by Kamil Wdowiak, Andrzej Miklaszewski and Judyta Cielecka-Piontek
Pharmaceutics 2024, 16(8), 999; https://doi.org/10.3390/pharmaceutics16080999 - 28 Jul 2024
Viewed by 1266
Abstract
Curcumin and piperine are plant compounds known for their health-promoting properties, but their use in the prevention or treatment of various diseases is limited by their poor solubility. To overcome this drawback, the curcumin–piperine amorphous polymer–phospholipid dispersions were prepared by hot melt extrusion [...] Read more.
Curcumin and piperine are plant compounds known for their health-promoting properties, but their use in the prevention or treatment of various diseases is limited by their poor solubility. To overcome this drawback, the curcumin–piperine amorphous polymer–phospholipid dispersions were prepared by hot melt extrusion technology. X-ray powder diffraction indicated the formation of amorphous systems. Differential scanning calorimetry confirmed amorphization and provided information on the good miscibility of the active compound–polymer–phospholipid dispersions. Owing to Fourier-transform infrared spectroscopy, the intermolecular interactions in systems were investigated. In the biopharmaceutical properties assessment, the improvement in solubility as well as the maintenance of the supersaturation state were confirmed. Moreover, PAMPA models simulating the gastrointestinal tract and blood-brain barrier showed enhanced permeability of active compounds presented in dispersions compared to the crystalline form of individual compounds. The presented paper suggests that polymer–phospholipid dispersions advantageously impact the bioaccessibility of poorly soluble active compounds. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

16 pages, 1319 KiB  
Article
Prediction of Protein Targets in Ovarian Cancer Using a Ru-Complex and Carbon Dot Drug Delivery Therapeutic Nanosystems: A Bioinformatics and µ-FTIR Spectroscopy Approach
by Maja D. Nešić, Tanja Dučić, Branislava Gemović, Milan Senćanski, Manuel Algarra, Mara Gonçalves, Milutin Stepić, Iva A. Popović, Đorđe Kapuran and Marijana Petković
Pharmaceutics 2024, 16(8), 997; https://doi.org/10.3390/pharmaceutics16080997 - 27 Jul 2024
Viewed by 995
Abstract
We predicted the protein therapeutic targets specific to a Ru-based potential drug and its combination with pristine and N-doped carbon dot drug delivery systems, denoted as RuCN/CDs and RuCN/N-CDs. Synchrotron-based FTIR microspectroscopy (µFTIR) in addition to bioinformatics data on drug structures and protein [...] Read more.
We predicted the protein therapeutic targets specific to a Ru-based potential drug and its combination with pristine and N-doped carbon dot drug delivery systems, denoted as RuCN/CDs and RuCN/N-CDs. Synchrotron-based FTIR microspectroscopy (µFTIR) in addition to bioinformatics data on drug structures and protein sequences were applied to assess changes in the protein secondary structure of A2780 cancer cells. µFTIR revealed the moieties of the target proteins’ secondary structure changes only after the treatment with RuCN and RuCN/N-CDs. A higher content of α-helices and a lower content of β-sheets appeared in A2780 cells after RuCN treatment. Treatment with RuCN/N-CDs caused a substantial increase in parallel β-sheet numbers, random coil content, and tyrosine residue numbers. The results obtained suggest that the mitochondrion-related proteins NDUFA1 and NDUFB5 are affected by RuCN either via overexpression or stabilisation of helical structures. RuCN/N-CDs either induce overexpression of the β-sheet-rich protein NDUFS1 and affect its random coil structure or interact and stabilise its structure via hydrogen bonding between -NH2 groups from N-CDs with protein C=O groups and –OH groups of serine, threonine, and tyrosine residues. The N-CD nanocarrier tunes this drug’s action by directing it toward a specific protein target, changing this drug’s coordination ability and inducing changes in the protein’s secondary structures and function. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

Review

Jump to: Research

51 pages, 3047 KiB  
Review
The Impact of COVID-19 on RNA Therapeutics: A Surge in Lipid Nanoparticles and Alternative Delivery Systems
by Nargish Parvin, Tapas K. Mandal and Sang-Woo Joo
Pharmaceutics 2024, 16(11), 1366; https://doi.org/10.3390/pharmaceutics16111366 - 25 Oct 2024
Viewed by 818
Abstract
The COVID-19 pandemic has significantly accelerated progress in RNA-based therapeutics, particularly through the successful development and global rollout of mRNA vaccines. This review delves into the transformative impact of the pandemic on RNA therapeutics, with a strong focus on lipid nanoparticles (LNPs) as [...] Read more.
The COVID-19 pandemic has significantly accelerated progress in RNA-based therapeutics, particularly through the successful development and global rollout of mRNA vaccines. This review delves into the transformative impact of the pandemic on RNA therapeutics, with a strong focus on lipid nanoparticles (LNPs) as a pivotal delivery platform. LNPs have proven to be critical in enhancing the stability, bioavailability, and targeted delivery of mRNA, facilitating the unprecedented success of vaccines like those developed by Pfizer-BioNTech and Moderna. Beyond vaccines, LNP technology is being explored for broader therapeutic applications, including treatments for cancer, rare genetic disorders, and infectious diseases. This review also discusses emerging RNA delivery systems, such as polymeric nanoparticles and viral vectors, which offer alternative strategies to overcome existing challenges related to stability, immune responses, and tissue-specific targeting. Additionally, we examine the pandemic’s influence on regulatory processes, including the fast-tracked approvals for RNA therapies, and the surge in research funding that has spurred further innovation in the field. Public acceptance of RNA-based treatments has also grown, laying the groundwork for future developments in personalized medicine. By providing an in-depth analysis of these advancements, this review highlights the long-term impact of COVID-19 on the evolution of RNA therapeutics and the future of precision drug delivery technologies. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Figure 1

22 pages, 6892 KiB  
Review
Review on Photoacoustic Monitoring after Drug Delivery: From Label-Free Biomarkers to Pharmacokinetics Agents
by Jiwoong Kim, Seongwook Choi, Chulhong Kim, Jeesu Kim and Byullee Park
Pharmaceutics 2024, 16(10), 1240; https://doi.org/10.3390/pharmaceutics16101240 - 24 Sep 2024
Viewed by 742
Abstract
Photoacoustic imaging (PAI) is an emerging noninvasive and label-free method for capturing the vasculature, hemodynamics, and physiological responses following drug delivery. PAI combines the advantages of optical and acoustic imaging to provide high-resolution images with multiparametric information. In recent decades, PAI’s abilities have [...] Read more.
Photoacoustic imaging (PAI) is an emerging noninvasive and label-free method for capturing the vasculature, hemodynamics, and physiological responses following drug delivery. PAI combines the advantages of optical and acoustic imaging to provide high-resolution images with multiparametric information. In recent decades, PAI’s abilities have been used to determine reactivity after the administration of various drugs. This study investigates photoacoustic imaging as a label-free method of monitoring drug delivery responses by observing changes in the vascular system and oxygen saturation levels across various biological tissues. In addition, we discuss photoacoustic studies that monitor the biodistribution and pharmacokinetics of exogenous contrast agents, offering contrast-enhanced imaging of diseased regions. Finally, we demonstrate the crucial role of photoacoustic imaging in understanding drug delivery mechanisms and treatment processes. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Figure 1

37 pages, 6387 KiB  
Review
Drug-Loaded Bioscaffolds for Osteochondral Regeneration
by Yifan Tong, Jiaqi Yuan, Zhenguang Li, Cuijun Deng and Yu Cheng
Pharmaceutics 2024, 16(8), 1095; https://doi.org/10.3390/pharmaceutics16081095 - 21 Aug 2024
Viewed by 1320
Abstract
Osteochondral defect is a complex tissue loss disease caused by arthritis, high-energy trauma, and many other reasons. Due to the unique structural characteristics of osteochondral tissue, the repair process is sophisticated and involves the regeneration of both hyaline cartilage and subchondral bone. However, [...] Read more.
Osteochondral defect is a complex tissue loss disease caused by arthritis, high-energy trauma, and many other reasons. Due to the unique structural characteristics of osteochondral tissue, the repair process is sophisticated and involves the regeneration of both hyaline cartilage and subchondral bone. However, the current clinical treatments often fall short of achieving the desired outcomes. Tissue engineering bioscaffolds, especially those created via three-dimensional (3D) printing, offer promising solutions for osteochondral defects due to their precisely controllable 3D structures. The microstructure of 3D-printed bioscaffolds provides an excellent physical environment for cell adhesion and proliferation, as well as nutrient transport. Traditional 3D-printed bioscaffolds offer mere physical stimulation, while drug-loaded 3D bioscaffolds accelerate the tissue repair process by synergistically combining drug therapy with physical stimulation. In this review, the physiological characteristics of osteochondral tissue and current treatments of osteochondral defect were reviewed. Subsequently, the latest progress in drug-loaded bioscaffolds was discussed and highlighted in terms of classification, characteristics, and applications. The perspectives of scaffold design, drug control release, and biosafety were also discussed. We hope this article will serve as a valuable reference for the design and development of osteochondral regenerative bioscaffolds and pave the way for the use of drug-loaded bioscaffolds in clinical therapy. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Figure 1

42 pages, 4178 KiB  
Review
Recent Review on Biological Barriers and Host–Material Interfaces in Precision Drug Delivery: Advancement in Biomaterial Engineering for Better Treatment Therapies
by Rohitas Deshmukh, Pranshul Sethi, Bhupendra Singh, Jailani Shiekmydeen, Sagar Salave, Ravish J. Patel, Nemat Ali, Summya Rashid, Gehan M. Elossaily and Arun Kumar
Pharmaceutics 2024, 16(8), 1076; https://doi.org/10.3390/pharmaceutics16081076 - 16 Aug 2024
Viewed by 1486
Abstract
Preclinical and clinical studies have demonstrated that precision therapy has a broad variety of treatment applications, making it an interesting research topic with exciting potential in numerous sectors. However, major obstacles, such as inefficient and unsafe delivery systems and severe side effects, have [...] Read more.
Preclinical and clinical studies have demonstrated that precision therapy has a broad variety of treatment applications, making it an interesting research topic with exciting potential in numerous sectors. However, major obstacles, such as inefficient and unsafe delivery systems and severe side effects, have impeded the widespread use of precision medicine. The purpose of drug delivery systems (DDSs) is to regulate the time and place of drug release and action. They aid in enhancing the equilibrium between medicinal efficacy on target and hazardous side effects off target. One promising approach is biomaterial-assisted biotherapy, which takes advantage of biomaterials’ special capabilities, such as high biocompatibility and bioactive characteristics. When administered via different routes, drug molecules deal with biological barriers; DDSs help them overcome these hurdles. With their adaptable features and ample packing capacity, biomaterial-based delivery systems allow for the targeted, localised, and prolonged release of medications. Additionally, they are being investigated more and more for the purpose of controlling the interface between the host tissue and implanted biomedical materials. This review discusses innovative nanoparticle designs for precision and non-personalised applications to improve precision therapies. We prioritised nanoparticle design trends that address heterogeneous delivery barriers, because we believe intelligent nanoparticle design can improve patient outcomes by enabling precision designs and improving general delivery efficacy. We additionally reviewed the most recent literature on biomaterials used in biotherapy and vaccine development, covering drug delivery, stem cell therapy, gene therapy, and other similar fields; we have also addressed the difficulties and future potential of biomaterial-assisted biotherapies. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

16 pages, 3690 KiB  
Review
Revitalizing Bacillus Calmette–Guérin Immunotherapy for Bladder Cancer: Nanotechnology and Bioengineering Approaches
by Maoxin Lv, Shihao Shang, Kepu Liu, Yuliang Wang, Peng Xu, Hao Song, Jie Zhang, Zelong Sun, Yuhao Yan, Zheng Zhu, Hao Wu and Hao Li
Pharmaceutics 2024, 16(8), 1067; https://doi.org/10.3390/pharmaceutics16081067 - 15 Aug 2024
Viewed by 1220
Abstract
Bacillus Calmette–Guérin (BCG) immunotherapy has been a cornerstone treatment for non-muscle-invasive bladder cancer for decades and still faces challenges, such as severe immune adverse reactions, which reduce its use as a first-line treatment. This review examines BCG therapy’s history, mechanisms, and current status, [...] Read more.
Bacillus Calmette–Guérin (BCG) immunotherapy has been a cornerstone treatment for non-muscle-invasive bladder cancer for decades and still faces challenges, such as severe immune adverse reactions, which reduce its use as a first-line treatment. This review examines BCG therapy’s history, mechanisms, and current status, highlighting how nanotechnology and bioengineering are revitalizing its application. We discuss novel nanocarrier systems aimed at enhancing BCG’s efficacy while mitigating specific side effects. These approaches promise improved tumor targeting, better drug loading, and an enhanced stimulation of anti-tumor immune responses. Key strategies involve using materials such as liposomes, polymers, and magnetic particles to encapsulate BCG or functional BCG cell wall components. Additionally, co-delivering BCG with chemotherapeutics enhances drug targeting and tumor-killing effects while reducing drug toxicity, with some studies even achieving synergistic effects. While most studies remain experimental, this research direction offers hope for overcoming BCG’s limitations and advancing bladder cancer immunotherapy. Further elucidation of BCG’s mechanisms and rigorous safety evaluations of new delivery systems will be crucial for translating these innovations into clinical practice. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Figure 1

15 pages, 1621 KiB  
Review
Application of Scaffold-Based Drug Delivery in Oral Cancer Treatment: A Novel Approach
by Elham Saberian, Andrej Jenča, Adriána Petrášová, Hadi Zare-Zardini and Meysam Ebrahimifar
Pharmaceutics 2024, 16(6), 802; https://doi.org/10.3390/pharmaceutics16060802 - 14 Jun 2024
Cited by 2 | Viewed by 1657
Abstract
This comprehensive review consolidates insights from two sources to emphasize the transformative impact of scaffold-based drug delivery systems in revolutionizing oral cancer therapy. By focusing on their core abilities to facilitate targeted and localized drug administration, these systems enhance therapeutic outcomes significantly. Scaffolds, [...] Read more.
This comprehensive review consolidates insights from two sources to emphasize the transformative impact of scaffold-based drug delivery systems in revolutionizing oral cancer therapy. By focusing on their core abilities to facilitate targeted and localized drug administration, these systems enhance therapeutic outcomes significantly. Scaffolds, notably those coated with anti-cancer agents such as cisplatin and paclitaxel, have proven effective in inhibiting oral cancer cell proliferation, establishing a promising avenue for site-specific drug delivery. The application of synthetic scaffolds, including Poly Ethylene Glycol (PEG) and poly(lactic-co-glycolic acid) (PLGA), and natural materials, like collagen or silk, in 3D systems has been pivotal for controlled release of therapeutic agents, executing diverse anti-cancer strategies. A key advancement in this field is the advent of smart scaffolds designed for sequential cancer therapy, which strive to refine drug delivery systems, minimizing surgical interventions, accentuating the significance of 3D scaffolds in oral cancer management. These systems, encompassing local drug-coated scaffolds and other scaffold-based platforms, hold the potential to transform oral cancer treatment through precise interventions, yielding improved patient outcomes. Local drug delivery via scaffolds can mitigate systemic side effects typically associated with chemotherapy, such as nausea, alopecia, infections, and gastrointestinal issues. Post-drug release, scaffolds foster a conducive environment for non-cancerous cell growth, adhering and proliferation, demonstrating restorative potential. Strategies for controlled and targeted drug delivery in oral cancer therapy span injectable self-assembling peptide hydrogels, nanocarriers, and dual drug-loaded nanofibrous scaffolds. These systems ensure prolonged release, synergistic effects, and tunable targeting, enhancing drug delivery efficiency while reducing systemic exposure. Smart scaffolds, capable of sequential drug release, transitioning to cell-friendly surfaces, and enabling combinatorial therapy, hold the promise to revolutionize treatment by delivering precise interventions and optimized outcomes. In essence, scaffold-based drug delivery systems, through their varied forms and functionalities, are reshaping oral cancer therapy. They target drug delivery efficiency, diminish side effects, and present avenues for personalization. Challenges like fabrication intricacy, biocompatibility, and scalability call for additional research. Nonetheless, the perspective on scaffold-based systems in oral cancer treatment is optimistic, as ongoing advancements aim to surmount current limitations and fully leverage their potential in cancer therapy. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Figure 1

18 pages, 809 KiB  
Review
The Integration of Advanced Drug Delivery Systems into Conventional Adjuvant Therapies for Peri-Implantitis Treatment
by Iria Seoane-Viaño, Mariola Seoane-Gigirey, Carlos Bendicho-Lavilla, Luz M. Gigirey, Francisco J. Otero-Espinar and Santiago Seoane-Trigo
Pharmaceutics 2024, 16(6), 769; https://doi.org/10.3390/pharmaceutics16060769 - 5 Jun 2024
Viewed by 1545
Abstract
Despite the high success rates of dental implants, peri-implantitis is currently the most common complication in dental implantology. Peri-implantitis has an inflammatory nature, it is associated with the accumulation of plaque in the peri-implant tissues, and its evolution can be progressive depending on [...] Read more.
Despite the high success rates of dental implants, peri-implantitis is currently the most common complication in dental implantology. Peri-implantitis has an inflammatory nature, it is associated with the accumulation of plaque in the peri-implant tissues, and its evolution can be progressive depending on various factors, comorbidities, and poor oral health. Prophylaxis and different treatment methods have been widely discussed in recent decades, and surgical and non-surgical techniques present both advantages and disadvantages. In this work, a literature review of different studies on the application of adjuvant treatments, such as local and systemic antibiotics and antiseptic treatments, was conducted. Positive outcomes have been found in the short (up to one year after treatment) and long term (up to ten years after treatment) with combined therapies. However, there is still a need to explore new therapies based on the use of advanced drug delivery systems for the effective treatment of peri-implantitis in the long term and without relapses. Hence, micro- and nanoparticles, implants, and injectable hydrogels, among others, should be considered in future peri-implantitis treatment with the aim of enhancing overall therapy outcomes. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Figure 1

Back to TopTop