Extracellular Vesicles and Nanoparticles in Regenerative and Personalised Medicine: Diagnostic and Therapeutic Roles—A Narrative Review
Abstract
1. Introduction
1.1. Extracellular Vesicles in Regenerative Medicine
- −
- Musculoskeletal repair: EVs derived from mesenchymal stem cells (MSCs) augment osteogenesis and chondrogenesis [4].
- −
- Neurovascular regeneration: EVs from dental pulp promote angiogenesis and neurogenesis in ischemic models [5].
- −
- Wound repair: Vascular endothelial growth factor (VEGF) and transforming growth factor-beta 1 (TGF-β1)-overexpressing EVs lead to enhanced wound closure and vascularisation, depending on the microenvironment [6].
- −
- Neurodegenerative biomarkers: phosphorylated tau and α-synuclein—loaded circulating extracellular vesicles for the differential diagnosis of Alzheimer’s and Parkinson’s disease [7].
1.2. Nanoparticles in Regenerative Medicine
- Lipid-based NPs: Liposomes and micelles are well-established carriers for therapy [18].
1.3. Translational Barriers and Emerging Solutions
- Toxicity—as associated with ROS production, apoptosis, and immune stimulation.
- Immunogenicity—mediated by protein corona development and complement activation.
- Scalability—limited by EV diversity and NP production repeatability.
1.4. Role of Artificial Intelligence
1.5. Aim of the Review
- i.
- Considers EV- and NP-based therapies in the context of disease.
- ii.
- Explores mixed hybrid and biomimetic systems combining natural inspiration with synthetic advancements.
- iii.
- Investigates the implications of AI in predictive design and personalised application.
- iv.
- Conducts a critical review of cytotoxicity and safety, providing systematic comparisons across classes of NPs.
2. Methodology
2.1. Literature Search Strategy
- −
- “extracellular vesicles” OR “exosomes” OR “microvesicles” AND “regenerative medicine”
- −
- “nanoparticles” OR “nanomedicine” AND “personalised medicine”
- −
- “biomimetic platforms” OR “hybrid nanoparticles” AND “therapy”
- −
- “artificial intelligence” OR “machine learning” AND “nanoparticle design” OR “EV diagnostics”
- −
- “cytotoxicity” OR “safety profiles” AND “nanoparticles” OR “extracellular vesicles”
2.1.1. Inclusion and Exclusion Criteria
2.1.2. Data Extraction and Synthesis
- Disease-specific regenerative applications.
- Hybrid and biomimetic platforms.
- Artificial intelligence in nanomedicine.
- Cytotoxicity and safety profiles.
2.1.3. Limitations of the Methodology
3. Regenerative Medicine by Disease Type
3.1. Immunogenicity Differences Between EVs and NPs
3.1.1. Immunogenicity of EVs
3.1.2. Immunogenicity of NPs
3.2. Neurological and Neurodegenerative Disorders
3.3. Cardiovascular Disease
3.4. Musculoskeletal Disorders
3.5. Hepatic and Renal Disorders
3.6. Skin and Wound Healing
3.7. Ocular, Oral, and Cardiac Tissue Engineering
3.8. Oncology and Post-Therapy Regeneration
3.9. Summary
- Neurology: EVs offer neuroprotection and angiogenesis, while NPs facilitate BBB crossing and controlled release.
- Cardiology: EVs decrease apoptosis and promote angiogenesis; polymeric NPs support the delivery of cardioprotective agents.
- Musculoskeletal: EVs promote osteogenesis and chondrogenesis; HA- and polymeric NPs help with scaffolds and growth factor delivery.
- Hepatic/Renal: EVs reduce fibrosis and apoptosis; polymeric NPs for safe targeted delivery.
- Skin: EVs accelerate the speed-up power closure and angiogenic process, while AgNPs and ZnO NPs provide an additional antimicrobial armour.
- Other tissues: EVs versus NPs ECM-mimetic scaffolds for dental, ocular and myocardial regeneration. EVs and NPs may have better efficacy when used in combination.
- Oncology overlap: EVs repair tissue homeostasis; NPs enable targeted therapy and theranostics.
4. Hybrid and Biomimetic Platforms
4.1. Membrane-Coated Nanoparticles
- −
- −
- Targeting damaged vasculature: Encapsulation of platelets (PLT) into a membrane increases their adhesion potential to sites of vascular injury/inflammation, favouring delivery into ischemic tissue or stented vessels [86].
- −
- −
- −
4.2. Engineered Biomimetic Particles (EBPs)
- −
- Tailored physicochemical properties: EBPs can have well-defined size ranges (50–200 nm), optimal zeta potentials, and tunable lipid or polymer shells, enabling batch-to-batch reproducibility [8].
- −
- Cargo loading: EBPs can be designed to load various types of drugs, including siRNA, mRNA, proteins, growth factors, and small-molecule drugs. Furthermore, a host of therapeutic agents have been reportedly encapsulated with drug loading efficiencies that frequently exceed those of natural, bio-derived EVs [8].
- −
- −
- Stimuli sensitivity: Genchi et al. [22] highlighted the use of EBPs embedded in photo-, magnetically, and acoustically sensitive platforms, enabling spatial and temporal release, to enhance angiogenesis, osteogenesis, and neurogenesis in tissue engineering.
- −
- Translational potential: EBPs mitigate yield and heterogeneity associated with natural EVs while preserving beneficial biological activity, thereby closing the gap between reproducibility and functionality.
4.3. EV–NP Fusion Hybrids
- −
- Drug stability and preservation: EV–NP hybrids enhance encapsulation and protect drugs from enzymatic degradation, thereby prolonging the therapeutic effect [8].
- −
- Theranostic ability: By co-encapsulating imaging probes (fluorescent dyes, magnetic nanoparticles, or radionuclide tracers) and therapeutic drugs, the hybrids enable simultaneous diagnosis and treatment (theranostics) [7].
- −
- −
4.4. Translational and Technological Advantages
- (a)
- (b)
- Reproducibility and upscaling: EBPs, as well as NP fusion constructs, can be produced in a reproducible manner under standardised conditions, unlike natural EVs [8].
- (c)
- (d)
- (e)
- (a)
- (b)
- (c)
4.5. Outlook
- i.
- Integration with AI: Predictive modelling of biodistribution, immune recognition, and therapeutic response across the hybrid system (as in Chapter 5).
- ii.
- Standardisation: Development of Good Manufacturing Practice (GMP) compliant protocols for consistent manufacturing.
- iii.
- Personalisation: Tailoring hybrids using patient-derived EVs or disease-specific ligands for increased safety and efficacy.
5. Artificial Intelligence in Nanomedicine
5.1. AI’s Role in EVs’ Engineering
- −
- Diagnostics and classification: Machine learning (ML) combines proteomic and transcriptomic EV profiles to classify diseases. Greenberg et al. [25] demonstrated that ML classifiers can enhance diagnostic accuracy across multiple cancers. Serretiello et al. [26] utilised convolutional neural networks (CNNs) to classify breast cancer subtypes based on EV morphology and microstructure. These methods emphasise the potential of AI in developing non-invasive, reproducible diagnostic devices.
- −
- EV biomarker interpretability: Explainable AI (XAI) tools address transparency by attributing feature contributions within complex EV datasets. Trifylli et al. [91] applied XAI to staging liver disease, identifying which molecular signatures are necessary for predictability.
- −
- EV optimisation for therapy: In the work by Li et al. [27] and Chen et al. [28], predictive models were used to suggest ideal loading conditions for therapeutic molecules into EVs. This will enhance the reproducibility of EV-based treatments, which have been at the forefront of translating complex diseases into effective therapies.
5.2. AI in Nanoparticle Design
- (1)
- Predictive modelling of toxicity and biodistribution: Yousaf [92], Ahmadi et al. [23], and Yazdipour et al. [24] show that size, charge, and surface chemistry can accurately predict NP toxicity using support vector machines (SVMs), random forests (RFs) and artificial neural networks (ANN). These models minimise the need for animal testing and enhance pre-clinical safety evaluation.
- (2)
- Treatment optimisation: Kapoor et al. [93] developed deep learning and hybrid models of NP–drug interactions to predict tumour accumulation and BBB penetration. Such an approach expedites the development of NPs in cancer and neurological disorders.
- (3)
- Reproducibility of the formulation: Khokhlov et al. [94] demonstrated that AI-driven formulation models can minimise the issue of inter-laboratory variabilities, which remains a significant bottleneck in NP development. It is because AI can associate input conditions (temperature, solvent, ligand ratios) with NP quality that scale-up can be achieved in a standardised manner.
- (4)
5.3. The Role of Integrated AI in Nanomedicine
- (1)
- Hybrid EV–NP systems: AI models predict loading and unloading kinetics for cargo(s); targeting efficiency in engineered hybrids, e.g., EV-coated NPs. Models like these reduce cost and time by iteratively optimising design prior to in vivo testing.
- (2)
- Clinical trial simulation: AI can model clinical trial outcomes using patient datasets and pre-clinical EV/NP performance data, thus optimising patient selection and adaptive dosing scenarios.
- (3)
- Regulatory science: While AI’s predictive tools can comply with regulations, they also enable the early detection of toxicity and reproducibility across laboratories. This is especially necessary for companies that require AI explainability and traceability.
- (4)
- Data harmonisation: Standardised EV isolation and NP characterisation protocols are still lacking, representing a significant bottleneck in the field. Artificial intelligence requires consistent datasets for practical training and emphasises the need for multi-centre validation/harmonisation under MISEV guidelines.
5.4. AI Applications in EV and NP Studies
5.5. Summary
5.6. How AI Addresses Traditional Challenges in EV Research
- (1)
- Heterogeneity of EV populations: The composition (size, content, and cell of origin) of EVs varies, which makes it difficult to compare results between laboratories.
- (2)
- Poor yield and lack of uniformity in isolation techniques—Ultracentrifugation, precipitation, and chromatography frequently yield various EV profiles.
- AI solution: Autonomous (AI-driven) optimisation of isolation parameters resulting in standardised radioactivity output and purity, assuring reproducibility, and meeting MISEV guidelines [28].
- (3)
- Clinical translation: Limited reproducibility—Small datasets and variable patient responses prevent reproducible results.
- AI solution: Multi-omics EV data and patient clinical profiles are integrated for such purposes, increasing the reproducibility of diagnosis and predicting therapy response as well [91].
- (4)
- Poor interpretability of EV biomarkers: Even when predictive, much is unknown about the source and meaning of biomarkers.
- AI solution: A XAI highlights which of the EV cargo molecules are driving a diagnostic or prognostic prediction, rendering the results understandable to clinicians and regulators [91].
6. Cytotoxicity and Safety Profiles
- (1)
- NP formulations (Composition, Size, Charge variation and surface modifications).
- (2)
- Other established models in vitro (human/rodent hepatocytes, renal epithelial cells, fibroblasts) or in vivo (murine/rodent animal models).
- (3)
- Mechanistic endpoints determined: ROS generation, mitochondrial membrane potential, caspase activation, inflammatory cytokines (IL-6, TNF-α), autophagy (mTOR signalling), and DNA damage.
6.1. Metal Nanoparticles
- −
- Formation of adducts with SH groups of the enzymes of the respiration chain→mitochondria damage.
- −
- DNA damage: ROS-mediated fragmentation of the DNA.
- −
6.2. Metal Oxide Nanoparticles
- (a)
- Zinc oxide nanoparticles (ZnO NPs): ZnO NPs are toxic at concentrations exceeding 10 µg/mL, resulting in damage to hepatocytes and renal epithelial cells [124]. Mechanisms:
- (b)
- Copper oxide nanoparticles (CuO NPs): They are found to be more toxic than ZnO and cause high levels of ROS production, apoptotic index, and release of inflammatory cytokines in neurons and epithelial models [11].
- (c)
- Iron oxide nanoparticles (Fe3O4, Fe2O3): Most used as contrast agents and drug carriers, safe at clinical concentrations. Nevertheless, lysosomal storage can lead to pro-inflammatory cascades. The ROS-mediated biphasic pulmonary inflammation is shown after inhalation exposure [130].
- (d)
- Titanium dioxide nanoparticles (TiO2 NPs): Low acute toxicity but accumulate in the liver or lung with chronic exposure. Mechanisms:
- (e)
- (f)
- Nickel nanoparticles (Ni NPs) activate the JAK/STAT signalling axis, elevating IL-6, IL-8, interleukin-10 (IL-10), and tumour necrosis factor-alpha (TNF-α), thereby driving strong pro-inflammatory responses [112].
6.3. Carbon-Based Nanomaterials
- −
- Involvement of the lungs, mainly via inhalation, including pulmonary inflammation.
- −
- Production of ROS and disturbance in the function of mitochondria.
- −
- PEGylation or functionalization partially mitigates toxicity.
6.4. Polymeric Nanoparticles
- −
- Controlled degradation hydrolytically to lactic acid and glycolic acid.
- −
- Uncommon immune activation at large doses (activation of the complement pathway).
- −
- High biocompatibility facilitates repeated and prolonged treatment.
6.5. Quantum Dots
6.6. Comparative Insights
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- −
- Ag, ZnO, CuO, and MnO NPs → high acute toxicity.
- −
- (TiO2, SiO2, Ni NPs) → Chronic inflammation effects.
- −
- CNTs → inflammation, pulmonary fibrosis, granulomas.
- −
- Polymeric NPs → the least toxic candidates for translation.
- −
- QDs → do not because of heavy-metal toxicity.
6.7. Summary
- (1)
- Standardised toxicological protocols across models.
- (2)
- Incorporation of mechanistic biomarkers (ROS, cytokines, caspases) into regulatory matrices.
- (3)
7. Discussions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, B.H.; Parent, C.A.; Weaver, A.M. Extracellular Vesicles: Critical Players during Cell Migration. Dev. Cell Cell Press J. 2021, 56, 1861–1874. [Google Scholar] [CrossRef]
- Ginini, L.; Billan, S.; Fridman, E.; Gil, Z. Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. Cells 2022, 11, 1375. [Google Scholar] [CrossRef]
- Berumen Sánchez, G.; Bunn, K.E.; Pua, H.H.; Rafat, M. Extracellular Vesicles: Mediators of Intercellular Communication in Tissue Injury and Disease. Cell Commun. Signal. 2021, 19, 104. [Google Scholar] [CrossRef] [PubMed]
- Bu, Z.; Jing, J.; Liu, W.; Fan, Z.; Huang, J.; Zhou, Z.; Hu, J.; An, J.; Hong, J.; Yu, J.; et al. Treatment of Denervated Muscle Atrophy by Injectable Dual-Responsive Hydrogels Loaded with Extracellular Vesicles. Adv. Sci. 2025, 12, 2412248. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.J.; Zou, S.; Zhao, X.; Liu, W.; Zhang, Y.; Zhao, I.S. Extracellular Vesicles as Therapeutic Tools in Regenerative Dentistry. Stem Cell Res. Ther. 2024, 15, 365. [Google Scholar] [CrossRef] [PubMed]
- James, J.K.; Janardhana, P.B.; Padma, K.R.; Don, K.R. Review Article: An Overview of Exosomes in Biology and Their Potential Applications in Regenerative Medicine. J. Assoc. Med. Sci. 2024, 57, 138–154. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Yang, Z.; Wang, B.; Gong, H.; Zhang, K.; Lin, Y.; Sun, M. Extracellular Vesicles: Biological Mechanisms and Emerging Therapeutic Opportunities in Neurodegenerative Diseases. Transl. Neurodegener. 2024, 13, 60. [Google Scholar] [CrossRef]
- Piffoux, M.; Volatron, J.; Cherukula, K.; Aubertin, K.; Wilhelm, C.; Silva, A.K.A.; Gazeau, F. Engineering and Loading Therapeutic Extracellular Vesicles for Clinical Translation: A Data Reporting Frame for Comparability. Adv. Drug Deliv. Rev. 2021, 178, 113972. [Google Scholar] [CrossRef]
- Sakthi Devi, R.; Girigoswami, A.; Siddharth, M.; Girigoswami, K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022, 194, 4187–4219. [Google Scholar] [CrossRef]
- Pallares, R.M.; Mottaghy, F.M.; Schulz, V.; Kiessling, F.; Lammers, T. Nanoparticle Diagnostics and Theranostics in the Clinic. J. Nucl. Med. 2022, 63, 1802–1808. [Google Scholar] [CrossRef]
- Sutunkova, M.P.; Klinova, S.V.; Ryabova, Y.V.; Tazhigulova, A.V.; Minigalieva, I.A.; Shabardina, L.; Solovyeva, S.N.; Bushueva, T.V.; Privalova, L.I. Comparative Evaluation of the Cytotoxic Effects of Metal Oxide and Metalloid Oxide Nanoparticles: An Experimental Study. Int. J. Mol. Sci. 2023, 24, 8383. [Google Scholar] [CrossRef] [PubMed]
- Ivask, A.; Titma, T.; Visnapuu, M.; Vija, H.; Kakinen, A.; Sihtmäe, M.; Pokhrel, S.; Mädler, L.; Heinlaan, M.; Kisand, V.; et al. Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types In Vitro. Curr. Top. Med. Chem. 2015, 15, 1914–1929. [Google Scholar] [CrossRef]
- Bernad, E.; Susan-Resiga, D.; Bernad, E.S. Bernad Hemodynamic Effects on Particle Targeting in the Arterial Bifur-Cation for Different Magnet Positions. Molecules 2019, 24, 2509. [Google Scholar] [CrossRef]
- Bernad, S.I.; Susan-Resiga, D.; Vekas, L.; Bernad, E.S. Drug Targeting Investigation in the Critical Region of the Arterial Bypass Graft. J. Magn. Magn. Mater. 2019, 475, 14–23. [Google Scholar] [CrossRef]
- Bernad, R.; Craciunescu, I.; Sandhu, G.S.; Dragomir-Daescu, D.; Tombacz, E.; Vekas, L. Turcu Fluid Targeted Delivery of Functionalized Magnetoresponsive Nanocomposite Particles to a Ferromagnetic Stent. J. Magn. Magn. Mater. 2021, 519, 167489. [Google Scholar] [CrossRef]
- Masarkar, A.; Maparu, A.K.; Nukavarapu, Y.S.; Rai, B. Predicting Cytotoxicity of Nanoparticles: A Meta-Analysis Using Machine Learning. ACS Appl. Nano Mater. 2024, 7, 19991–20002. [Google Scholar] [CrossRef]
- Sharma, N.; Kurmi, B.D.; Singh, D.; Mehan, S.; Khanna, K.; Karwasra, R.; Kumar, S.; Chaudhary, A.; Jhakmola, V.; Sharma, A.; et al. Nanoparticles Toxicity: An Overview of Its Mechanism and Plausible Mitigation Strategies. J. Drug Target. 2024, 32, 457–469. [Google Scholar] [CrossRef]
- Soto, K.F.; Carrasco, A.; Powell, T.G.; Garza, K.M.; Murr, L.E. Comparative in Vitro Cytotoxicity Assessment of Some Manufactured Nanoparticulate Materials Characterized by Transmission Electron Microscopy. J. Nanoparticle Res. 2005, 7, 145–169. [Google Scholar] [CrossRef]
- Babonaitė, M.; Striogaitė, E.; Grigorianaitė, G.; Lazutka, J.R. In Vitro Evaluation of DNA Damage Induction by Silver (Ag), Gold (Au), Silica (SiO2), and Aluminum Oxide (Al2O3) Nanoparticles in Human Peripheral Blood Mononuclear Cells. Curr. Issues Mol. Biol. 2024, 46, 6986–7000. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhang, T.; Tang, M. Toxicity Mechanism of Engineered Nanomaterials: Focus on Mitochondria. Environ. Pollut. 2024, 343, 123231. [Google Scholar] [CrossRef]
- Lorite, P.; Domínguez, J.N.; Palomeque, T.; Torres, M.I. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int. J. Mol. Sci. 2024, 26, 189. [Google Scholar] [CrossRef]
- Genchi, G.G.; Marino, A.; Tapeinos, C.; Ciofani, G. Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine. Front. Bioeng. Biotechnol. 2017, 5, 80. [Google Scholar] [CrossRef]
- Ahmadi, M.B.; Ayyoubzadeh, S.; Ghorbani-Bidkorpeh, F. Toxicity prediction of nanoparticles using machine learning approaches. Toxicology 2023, 501, 153697. [Google Scholar] [CrossRef]
- Yazdipour, M.A.; Masoorian, H.; Ahmadi, H.; Mohammadzadeh, N.; Ayyoubzadeh, S. Predicting the toxicity of nanoparticles using artificial intelligence tools: A systematic review. Nanotoxicology 2023, 17, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, Z.; Graim, K.; He, M. Towards Artificial Intelligence-Enabled Extracellular Vesicle Precision Drug Delivery. Adv. Drug Deliv. Rev. 2023, 199, 114974. [Google Scholar] [CrossRef] [PubMed]
- Serretiello, E.; Smimmo, A.; Ballini, A.; Parmeggiani, D.; Agresti, M.; Bassi, P.; Moccia, G.; Sciarra, A.; de Angelis, A.; Della Monica, P.; et al. Extracellular Vesicles and Artificial Intelligence: Unique Weapons against Breast Cancer. Appl. Sci. 2024, 14, 1639. [Google Scholar] [CrossRef]
- Li, G.; Chen, T.; Dahlman, J.E.; Eniola-Adefeso, L.; Ghiran, I.; Kurre, P.; Lam, W.A.; Lang, J.K.; Marbán, E.; Rodríguez Martín, P.; et al. Current Challenges and Future Directions for Engineering Extracellular Vesicles for Heart, Lung, Blood and Sleep Diseases. J. Extracell. Vesicles 2023, 12, 12305. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Sun, Y.; Tang, L.; Zhang, L.; Hu, Y.; He, M.; Li, Z.; Cheng, S.; Yuan, J.; et al. Predicting Gastric Cancer Response to Anti-HER2 Therapy or Anti-HER2 Combined Immunotherapy Based on Multi-Modal Data. Signal Transduct. Target. Ther. 2024, 9, 222. [Google Scholar] [CrossRef]
- Oshchepkova, A.L.; Markov, O.; Evtushenko, E.G.; Chernonosov, A.A.; Kiseleva, E.; Morozova, K.N.; Matveeva, V.; Artemyeva, L.; Vlassov, V.V.; Zenkova, M.A. Tropism of Extracellular Vesicles and Cell-Derived Nanovesicles to Normal and Cancer Cells: New Perspectives in Tumor-Targeted Nucleic Acid Delivery. Pharmaceutics 2021, 13, 1911. [Google Scholar] [CrossRef]
- Yin, W.; Ma, H.; Qu, Y.; Wang, S.; Zhao, R.; Yang, Y.; Guo, Z.-N. Targeted Exosome-Based Nanoplatform for New-Generation Therapeutic Strategies. Biomed. Mater. 2024, 19, 032002. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Malviya, R. Exploring Potential of Exosomes Drug Delivery System in the Treatment of Cancer: Advances and Prospective. Med. Drug Discov. 2023, 20, 100163. [Google Scholar] [CrossRef]
- Busatto, S.; Pham, A.; Suh, A.; Shapiro, S.A.; Wolfram, J. Organotropic Drug Delivery: Synthetic Nanoparticles and Extracellular Vesicles. Biomed. Microdevices 2019, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Kumarasamy, R.V.; Pei, J.; Raju, K.R.S.; Gopalakrishnan, V.K.; Palanisamy, C.P.; Mironescu, I.D. Integrating Engineered Nanomaterials with Extracellular Vesicles: Advancing Targeted Drug Delivery and Biomedical Applications. Front. Nanotechnol. 2025, 6, 1513683. [Google Scholar] [CrossRef]
- Toy, R.; Roy, K. Engineering Nanoparticles to Overcome Barriers to Immunotherapy. Bioeng. Transl. Med. 2016, 1, 47–62. [Google Scholar] [CrossRef]
- Rodríguez, D.A.; Vader, P. Extracellular Vesicle-Based Hybrid Systems for Advanced Drug Delivery. Pharmaceutics 2022, 14, 267. [Google Scholar] [CrossRef]
- Meng, W.; Wang, L.; Du, X.; Xie, M.; Li, F.; Wu, Z.E.; Gan, J.; Cao, C.; Cao, B.; Li, L. Engineered Mesenchymal Stem Cell-Derived Extracellular Vesicles Constitute a Versatile Platform for Targeted Drug Delivery. J. Control. Release 2023, 363, 235–252. [Google Scholar] [CrossRef]
- Yang, J.; Jia, C.; Yang, J. Designing Nanoparticle-Based Drug Delivery Systems for Precision Medicine. Int. J. Med. Sci. 2021, 18, 2943–2949. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Wang, C. A Review of the Regulatory Mechanisms of Extracellular Vesicles-Mediated Intercellular Communication. Cell Commun. Signal. 2023, 21, 77. [Google Scholar] [CrossRef]
- Yang, T.; Zhai, J.; Hu, D.; Yang, R.; Wang, G.; Li, Y.; Liang, G. Targeting Design of Nanoparticles in Tumor Therapy. Pharmaceutics 2022, 14, 1919. [Google Scholar] [CrossRef]
- Sharma, S.; Masud, M.K.; Kaneti, Y.V.; Rewatkar, P.; Koradia, A.; Hossain, M.S.A.; Yamauchi, Y.; Popat, A.; Salomon, C. Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications. Small 2021, 17, 2102220. [Google Scholar] [CrossRef]
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer Nanomedicine: Progress, Challenges and Opportunities. Nat. Rev. Cancer 2017, 17, 20–37. [Google Scholar] [CrossRef]
- Tetta, C.; Ghigo, E.; Silengo, L.; Dereigibus, M.C.; Camussi, G. Extracellular Vesicles as an Emerging Mechanism of Cell-to-Cell Communication. Endocrine 2023, 44, 11–19. [Google Scholar] [CrossRef]
- Armingol, E.; Officer, A.; Harismendy, O.; Lewis, N.E. Deciphering Cell–Cell Interactions and Communication from Gene Expression. Nat. Rev. Genet. 2021, 22, 71–88. [Google Scholar] [CrossRef]
- Jafari, A.; Babajani, A.; Abdollahpour-Alitappeh, M.; Ahmadi, N.; Rezaei-Tavirani, M. Exosomes and Cancer: From Molecular Mechanisms to Clinical Applications. Med. Oncol. 2021, 38, 45. [Google Scholar] [CrossRef]
- Shao, J.; Zaro, J.; Shen, Y. Advances in Exosome-Based Drug Delivery and Tumor Targeting: From Tissue Distribution to Intracellular Fate. Int. J. Nanomed. 2020, 15, 9355–9371. [Google Scholar] [CrossRef]
- Aheget, K.H.; Mazini, L.; Martin, F.; Belqat, B.; Marchal, J.A. Benabdellah Exosomes: Their Role in Patho-Genesis, Diagnosis and Treatment of Diseases. Cancers 2021, 13, 84. [Google Scholar] [CrossRef]
- Monopoli, M.P.; Åberg, C.; Salvati, A.; Dawson, K.A. Biomolecular Coronas Provide the Biological Identity of Nanosized Materials. Nat. Nanotechnol. 2012, 7, 779–786. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J. Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Ullah, M.; Kodam, S.P.; Mu, Q.; Akbar, A. Microbubbles versus Extracellular Vesicles as Therapeutic Cargo for Targeting Drug Delivery. ACS Nano 2021, 15, 3612–3620. [Google Scholar] [CrossRef] [PubMed]
- Avalos, P.N.; Forsthoefel, D.J. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front. Cell Dev. Biol. 2022, 10, 849905. [Google Scholar] [CrossRef] [PubMed]
- Peer, D.; Karo, J.M.; Seungpyo, H.; Farokhzad, O.C.; Margalit, S.; Langer, R. Nanocarriers as an Emerging Platform for Cancer Therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Caster, J.M.; Eblan, M.J.; Wang, A.Z. Clinical Translation of Nanomedicine. Chem. Rev. 2015, 115, 11147–11190. [Google Scholar] [CrossRef]
- Chaudhury, K.; Kumar, V.; Kandasamy, J.; RoyChoudhury, S. Regenerative Nanomedicine: Current Perspectives and Future Directions. Int. J. Nanomed. 2014, 9, 4153–4167. [Google Scholar] [CrossRef]
- Smyth, T.; Petrova, K.; Payton, N.M.; Persaud, I.; Redzic, J.S.; Graner, M.W.; Smith-Jones, P.; Anchordoquy, T.J. Surface Functionalization of Exosomes Using Click Chemistry. Bioconjugate Chem. 2014, 25, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Yerneni, S.S.; Solomon, T.; Smith, J.; Campbell, P.G. Radioiodination of Extravesicular Surface Constituents to Study the Biocorona, Cell Trafficking and Storage Stability of Extracellular Vesicles. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2022, 1866, 130069. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.G.J.; Ding, T.; Xianyu, Y. Surface Chemistry of Gold Nanoparticles for Bacterial Detection and Antimicrobial Applications. ACS Mater. Lett. 2015, 5, 638–655. [Google Scholar] [CrossRef]
- Richter, M.; Vader, P.; Fuhrmann, G. Approaches to Surface Engineering of Extracellular Vesicles. Adv. Drug Deliv. Rev. 2021, 173, 416–426. [Google Scholar] [CrossRef]
- de Abreu, R.C.; Fernandes, H.; da Costa Martins, P.A.; Sahoo, S.; Emanueli, C.; Ferreira, L. Native and Bioengineered Extracellular Vesicles for Cardiovascular Therapeutics. Nat. Rev. Cardiol. 2020, 17, 685–697. [Google Scholar] [CrossRef]
- Tekinay, A.B. Nanomaterials for Regenerative Medicine. In Nanomaterials for Regenerative Medicine; Humana: Cham, Switzerland, 2019. [Google Scholar]
- Lai, R.C.; Chen, T.S.; Lim, S.K. Mesenchymal Stem Cell Exosome: A Novel Stem Cell-Based Therapy for Cardiovascular Disease. Regen. Med. 2011, 6, 481–492. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, C.; Xiao, K. Engineered Extracellular Vesicles-like Biomimetic Nanoparticles as an Emerging Platform for Targeted Cancer Therapy. J. Nanobiotechnol. 2023, 21, 287. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Dong, S.; Grippin, A.J.; Teng, L.; Lee, A.S.; Kim, B.Y.S.; Jiang, W. Engineering Therapeutical Extracellular Vesicles for Clinical Translation. Trends Biotechnol. 2025, 43, 61–82. [Google Scholar] [CrossRef]
- Wang, M.; Altinoglu, S.; Takeda, Y.S.; Xu, Q. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery. PLoS ONE 2015, 10, e0141860. [Google Scholar] [CrossRef]
- Lam, J.K.W.; Chow, M.Y.T.; Zhang, Y.; Leung, S.W.S. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids 2015, 4, e252. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.G.; Marino, A.; Grillone, A.; Pezzini, I.; Ciofani, G. Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future. Adv. Healthc. Mater. 2017, 6, 1700002. [Google Scholar] [CrossRef]
- Eom, K.; Kim, J.; Choi, J.M.; Kang, T.; Chang, J.W.; Byun, K.M.; Jun, S.B.; Kim, S.J. Enhanced Infrared Neural Stimulation Using Localized Surface Plasmon Resonance of Gold Nanorods. Small 2014, 10, 3853–3857. [Google Scholar] [CrossRef]
- Kim, H.W.; Yang, K.; Jeong, W.J.; Choi, S.J.; Lee, J.S.; Cho, A.N.; Chang, G.-E.; Cheong, E.; Choi, S.-W.; Lim, Y.-B. Photoactivation of Noncovalently Assembled Peptide Ligands on Carbon Nanotubes Enables the Dynamic Regulation of Stem Cell Differentiation. ACS Appl. Mater. Interfaces 2016, 8, 26470–26481. [Google Scholar] [CrossRef]
- Ciofani, G.; Danti, S.; D’Alessandro, D.; Ricotti, L.; Moscato, S.; Bertoni, G. Enhancement of Neurite Outgrowth in Neuronal-like Cells Following Boron Nitride Nanotube-Mediated Stimulation. ACS Nano 2010, 4, 6267–6277. [Google Scholar] [CrossRef]
- Shapiro, M.G.; Homma, K.; Villarreal, S.; Richter, C.P.; Bezanilla, F. Infrared Light Excites Cells by Changing Their Electrical Capacitance. Nat. Commun. 2012, 3, 736. [Google Scholar] [CrossRef]
- Buzas, E.I. The Roles of Extracellular Vesicles in the Immune System. Nat. Rev. Immunol. 2023, 23, 236–250. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Lynch, I.; Ejtehadi, M.R.; Monopoli, M.P.; Bombelli, F.B.; Laurent, S. Protein-Nanoparticle Interactions: Opportunities and Challenges. Chem. Rev. 2011, 111, 5610–5637. [Google Scholar] [CrossRef]
- Chen, S.; Bao, Q.; Xu, W.; Zhai, X. Extracellular Particles: Emerging Insights into Central Nervous System Diseases. J. Nanobiotechnol. 2025, 23, 263. [Google Scholar] [CrossRef] [PubMed]
- Sanna, V.; Sechi, M. Therapeutic Potential of Targeted Nanoparticles and Perspective on Nanotherapies. ACS Med. Chem. Lett. 2020, 11, 1069–1073. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.; Sood, A.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the Clinic: An Update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef]
- Caliceti, P.; Matricardi, P. Advances in Drug Delivery and Biomaterials: Facts and Vision. Pharmaceutics 2019, 11, 48. [Google Scholar] [CrossRef]
- Xie, J.; Liu, G.; Eden, H.S.; Ai, H.; Chen, X. Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy. Acc. Chem. Res. 2011, 44, 883–892. [Google Scholar] [CrossRef]
- Oberbek, T.P.; Kozikowski, P.; Czarnecka, K.; Sobiech, P.; Jakubiak, S. Jankowski Inhalation Exposure to Various Nanoparticles in Work Environment—Contextual Information and Results of Measurements. J. Nanoparticle Res. 2019, 21, 222. [Google Scholar] [CrossRef]
- Staroń, A.; Długosz, O. Antimicrobial Properties of Nanoparticles in the Context of Advantages and Potential Risks of Their Use. J. Environ. Sci. Health Part A 2021, 56, 680–693. [Google Scholar] [CrossRef]
- Elder, G.A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Fin-kelstein, J. Oberd€orster Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System. Environ. Health Perspect. 2006, 114, 1172–1178. [Google Scholar] [CrossRef]
- Ji, J.H.; Jung, J.H.; Kim, S.S.; Yoon, J.U.; Park, J.D.; Choi, B.S.; Chung, Y.H.; Kwon, I.H.; Jeong, J.; Han, B.S.; et al. Twenty-Eight-Day Inhalation Toxicity Study of Silver Nanoparticles in Sprague-Dawley Rats. Inhal. Toxicol. 2007, 19, 857–871. [Google Scholar] [CrossRef]
- El-Drieny, E.E.A.; Sarhan, N.; Bayomy, N.; Elmajied Elsherbeni, S.; Momtaz, R.; Mohamed, H.-D. Histological and Immunohistochemical Study of the Effect of Gold Nanoparticles on the Brain of Adult Male Albino Rat. J. Microsc. Ultrastruct. 2015, 3, 181–190. [Google Scholar] [CrossRef]
- Yoo, Y.-M.; Lee, U.; Kim, Y.J.; Park, J.; Yoo, Y.-M. Dose-Dependent Cytotoxicity of Gold Nanoparticles on Human Neural Progenitor Cells and Rat Brain. J. Nanosci. Nanotechnol. 2019, 19, 5441–5447. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Zhang, J.; Hou, T.; Gao, Q.; Liu, X.; Li, F. CRISPR-Based Homogeneous Electrochemical Strategy for Near-Zero Background Detection of Breast Cancer Extracellular Vesicles via Fluidity-Enhanced Magnetic Capture Nanoprobe. Anal. Chem. 2025, 97, 2176–2185. [Google Scholar] [CrossRef]
- Khanna, G.P.; Ong, C.; Bay, B. Baeg Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials 2015, 5, 1163–1180. [Google Scholar] [CrossRef]
- Khristov, V.; Weber, S.R.; Caton-Darby, M.; Campbell, G.; Sundstrom, J.M. Diagnostic and Therapeutic Utility of Extracellular Vesicles in Ocular Disease. Int. J. Mol. Sci. 2025, 26, 836. [Google Scholar] [CrossRef]
- Kristensen, K.; Engel, T.B.; Stensballe, A.; Simonsen, J.B.; Andresen, T.L. The Hard Protein Corona of Stealth Liposomes Is Sparse. J. Control. Release 2019, 307, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; Piovesana, S. Liposome Protein Corona Characterization as a New Approach in Nanomedicine. Anal. Bioanal. Chem. 2019, 411, 4313–4326. [Google Scholar] [CrossRef] [PubMed]
- Trifylli, A.; Angelakis, A.; Kriebardis, G.; Papadopoulos, N.; Fortis, S. Extracellular Vesicles as Biomarkers for Steatosis Stages in MASLD Patients: An Algorithmic Approach Using Explainable Artificial Intelligence. medRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, I. AI and Machine Learning Approaches for Predicting Nanoparticles Toxicity the Critical Role of Physiochemical Properties. arXiv 2024, arXiv:2409.15322. [Google Scholar] [CrossRef]
- Kapoor, J.; Sharma, B.; Gandhi, S.; Prajapati, B. AI-driven design and optimization of nanoparticle-based drug delivery systems. Sci. Eng. Health Stud. 2024, 18, 24010003. [Google Scholar] [CrossRef]
- Khokhlov, I.; Legashev, L.; Bolodurina, I.; Shukhman, A.; Shoshin, D.E.; Kolesnik, S. Prediction of Dynamic Toxicity of Nanoparticles Using Machine Learning. Toxics 2024, 12, 750. [Google Scholar] [CrossRef]
- Fan, Z.; Jiang, C.; Wang, Y.; Wang, K.; Marsh, J.; Zhang, D.; Chen, X.; Nie, L. Engineered Extracellular Vesicles as Intelligent Nanosystems for Next-Generation Nanomedicine. Nanoscale Horiz. 2022, 7, 682–714. [Google Scholar] [CrossRef]
- Hamilton, S.; Kingston, B.R. Applying Artificial Intelligence and Computational Modeling to Nanomedicine. Curr. Opin. Biotechnol. 2023, 85, 103043. [Google Scholar] [CrossRef] [PubMed]
- Lavanya, G.; Sasipriya, B. Study on Emerging Machine Learning Trends on Nanoparticles—Nanoinformatics; Springer: Singapore, 2022. [Google Scholar]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Sotiriou, G.A.; Pratsinis, S.E. Antibacterial Activity of Nanosilver Ions and Particles. Environ. Sci. Technol. 2010, 44, 5649–5654. [Google Scholar] [CrossRef]
- Qiao, Z.; Yao, Y.; Song, S.; Yin, M.; Luo, J. Silver Nanoparticles with pH Induced Surface Charge Switchable Properties for Antibacterial and Antibiofilm Applications. J. Mater. Chem. B 2019, 7, 830–840. [Google Scholar] [CrossRef]
- Sheridan, A.J.; Thompson, K.C.; Slater, J.M. Interaction of Negatively and Positively Capped Gold Nanoparticle with Different Lipid Model Membranes. Biophys. Chem. 2022, 290, 106896. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Lim, D.W.; Choi, J. Assessment of Size-Dependent Antimicrobial and Cytotoxic Properties of Silver Nanoparticles. Adv. Mater. Sci. Eng. 2014, 2014, 763807. [Google Scholar] [CrossRef]
- Salatin, S.; Maleki Dizaj, S.; Yari Khosroushahi, A. Effect of the Surface Modification, Size, and Shape on Cellular Uptake of Nanoparticles. Cell Biol. Int. 2015, 39, 881–890. [Google Scholar] [CrossRef]
- Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric Nanoparticles for Antimicrobial Therapies: An Up-To-Date Overview. Polymers 2021, 13, 704. [Google Scholar] [CrossRef]
- Mercan, D.-A.; Niculescu, A.G. Nanoparticles for Antimicrobial Agents Delivery—An Up-to-Date Review. Int. J. Mol. Sci. 2023, 23, 13862. [Google Scholar] [CrossRef]
- Armentano, I.; Arciola, C.R.; Fortunati, E.; Ferrari, D.; Mattioli, S.; Amoroso, C.F.; Rizzo, J.; Kenny, J.; Imbriani, M.; Visai, L. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review. Sci. World J. 2014, 2014, 410423. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Kong, S.; Zhang, Z.; Hua, D. A Review of Big Data Technology and Its Application in Cancer Care. Comput. Biol. Med. 2024, 176, 108577. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ma, J.; Shen, R.; Lin, J.; Li, S.; Lu, X.; Stelzel, J.; Kong, J.; Cheng, L.; Vuong, I.; et al. Screening for Lipid Nanopar-Ticles That Modulate the Immune Activity of Helper T Cells towards Enhanced Antitumour Activity. Nat. Biomed. Eng. 2024, 8, 544–560. [Google Scholar] [CrossRef]
- Das, B.C.; Chokkalingam, P.; Masilamani, P.; Shukla, S.; Das, S. Stimuli-Responsive Boron-Based Materials in Drug Delivery. Int. J. Mol. Sci. 2023, 24, 2757. [Google Scholar] [CrossRef]
- Patra, J.K.; Baek, K.-H. Antibacterial Activity and Synergistic Antibacterial Potential of Biosynthesized Silver Nanoparticles against Foodborne Pathogenic Bacteria along with Its Anticandidal and Antioxidant Effects. Front. Microbiol. 2017, 8, 00167. [Google Scholar] [CrossRef]
- Amro, N.A.; Kotra, L.P.; Wadu-Mesthrige, K.; Bulychev, A.; Mobashery, S.; Liu, G.-y. High-Resolution Atomic Force Microscopy Studies of the Escherichia Coli Outer Membrane: Structural Basis for Permeability. Langmuir 2000, 16, 2789–2796. [Google Scholar] [CrossRef]
- You, D.J.; Lee, H.Y.; Taylor-Just, A.J.; Linder, K.E.; Bonner, J.C. Sex Differences in the Acute and Subchronic Lung Inflammatory Responses of Mice to Nickel Nanoparticles. Nanotoxicology 2020, 14, 1058–1081. [Google Scholar] [CrossRef]
- Käosaar, S.; Kahru, A.; Mantecca, P.; Kasemets, K. Profiling of the Toxicity Mechanisms of Coated and Uncoated Silver Nanoparticles to Yeast Saccharomyces Cerevisiae BY4741 Using a Set of Its 9 Single-Gene Deletion Mutants Defective in Oxidative Stress Response, Cell Wall or Membrane Integrity and Endocytosis. Toxicol. Vitr. 2016, 35, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Semmler-Behnke, M.; Takenaka, S.; Fertsch, S.; Schleh, C.; Haubold, S. Biodistribution of 1.4- and 18-nm Gold Particles in Rats. Biomaterials 2008, 29, 2102–2109. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, R.; Sulakhiya, K.; Paliwal, S.R.; Singh, V.; Kenwat, R.; Paramanik, D. Role of Nanoparticles in Neurotoxicity. In Nanomedical Drug Delivery for Neurodegenerative Diseases; Yadav, A.K., Shukla, R., Flora, S.J.S., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 165–182. [Google Scholar]
- Bakand, S.; Hayes, A. Toxicological Considerations, Toxicity Assessment, and Risk Management of Inhaled Nanoparticles. Int. J. Mol. Sci. 2016, 17, 929. [Google Scholar] [CrossRef]
- Khan, F.A.; Almohazey, D.; Alomari, M.; Almofty, S.A. Impact of Nanoparticles on Neuron Biology: Current Research Trends. Int. J. Nanomed. 2018, 13, 2767–2776. [Google Scholar] [CrossRef]
- Safaei, F.; Farimaneh, J.; Rajabi Mohammad Abad, A.; Iranmanesh, E.; Arabpour, F.; Doostishoar, F.; Taherizadeh, Z. The Effect of Silver Nanoparticles on Learning and Memory in Rodents: “A Systematic Review”. J. Occup. Med. Toxicol. 2023, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Tareq, M.; Khadrawy, Y.A.; Rageh, M.M.; Mohammed, H.S. Dose-Dependent Biological Toxicity of Green Synthesized Silver Nanoparticles in Rat’s Brain. Sci. Rep. 2022, 12, 22642. [Google Scholar] [CrossRef]
- Chen, C.Y.; Liao, P.L.; Tsai, C.H.; Chan, Y.J.; Cheng, Y.W.; Hwang, L.L.; Lin, K.H.; Yen, T.L.; Li, C.H. Inhaled Gold Nanoparticles Cause Cerebral Edema and Upregulate Endothelial Aquaporin 1 Expression, Involving Caveolin 1 Dependent Repression of Extracellular Regulated Protein Kinase Activity. Part. Fibre Toxicol. 2019, 16, 37. [Google Scholar] [CrossRef]
- Moosavi, M.A.; Sharifi, M.; Ghafary, S.M.; Mohammadalipour, Z.; Khataee, A.; Rahmati, M.; Hajjaran, S.; Łos, M.J.; Klonisch, T.; Ghavami, S. Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-Mediated Autophagy and Terminal Differentiation of Leukemia Cells. Sci. Rep. 2016, 6, 34413. [Google Scholar] [CrossRef]
- Gallud, A.; Klöditz, K.; Ytterberg, J.; Östberg, N.; Katayama, S.; Skoog, T.; Gogvadze, V.; Chen, Y.-Z.; Xue, D.; Moya, S.; et al. Cationic Gold Nanoparticles Elicit Mitochondrial Dysfunction: A Multi-Omics Study. Sci. Rep. 2019, 9, 4366. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, H.; Li, Z.; Zhang, T.; Yang, Z. Nano-TiO2 Induces Autophagy to Protect against Cell Death through Antioxidative Mechanism in Podocytes. Cell Biol. Toxicol. 2016, 32, 513–527. [Google Scholar] [CrossRef]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater. 2015, 2015, 720654. [Google Scholar] [CrossRef]
- Wang, H.W.; Chen, Y.; Yang, H.; Chen, X.; Duan, M.X.; Tai, P.C.; Sui, S.-F. Ring-like Pore Structures of SecA: Implication for Bacterial Protein-Conducting Channels. Proc. Natl. Acad. Sci. USA 2003, 100, 4221–4226. [Google Scholar] [CrossRef]
- Jena, P.; Bhattacharya, M.; Bhattacharjee, G.; Satpati, B.; Mukherjee, P.; Senapati, D.; Srinivasan, R. Bimetallic Gold-Silver Nanoparticles Mediate Bacterial Killing by Disrupting the Actin Cytoskeleton MreB. Nanoscale 2020, 12, 3731–3749. [Google Scholar] [CrossRef]
- Happy, A.; Soumya, M.; Venkat Kumar, S. Mechanistic Study on Antibacterial Action of Zinc Oxide Nanoparticles Synthesized Using Green Route. Chem. Biol. Interact. 2018, 286, 60–70. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R. Cellular Uptake and Mutagenic Potential of Metal Oxide Nanoparticles in Bacterial Cells. Chemosphere 2011, 83, 1124–1132. [Google Scholar] [CrossRef]
- Rogers, N.; Apte, S.; Batley, G.; Gadd, G.; Casey, P. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga Subcapitata: The Importance of Particle Solubility. Environ. Sci. Technol. 2007, 41, 8484–8490. [Google Scholar] [CrossRef]
- Paesa, M.; Remirez de Ganuza, C.; Alejo, T.; Yus, C.; Irusta, S.; Arruebo, M.; Sebastian, V.; Mendoza, G. Elucidating the Mechanisms of Action of Antibiotic-like Ionic Gold and Biogenic Gold Nanoparticles against Bacteria. J. Colloid Interface Sci. 2023, 633, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Hu, J.; Wu, T.; Cao, K.; Luo, X. Potential Biomarkers and Drugs for Nanoparticle-Induced Cytotoxicity in the Retina: Based on Regulation of Inflammatory and Apoptotic Genes. Int. J. Environ. Res. Public Health 2022, 19, 5664. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zheng, M.; Deng, J.; Shi, Y.; Jia, M.; Li, W. Nano-TiO2 Regulates the MAPK (ERK, P38) Pathway to Promote Apoptosis and Inhibit Proliferation of Human Colon Cells. Ecotoxicol. Environ. Saf. 2024, 283, 116973. [Google Scholar] [CrossRef]
- Suthar, J.K.; Rakesh, B.; Vaidya, A.; Ravindran, S. Comprehensive Analysis of Titanium Oxide Nanoparticle Size and Surface Properties on Neuronal PC-12 Cells: Unraveling Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition. J. Xenobiotics 2023, 13, 662–684. [Google Scholar] [CrossRef]
- Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium Dioxide Nanoparticles: A Review of Current Toxicological Data. Part. Fibre Toxicol. 2013, 10, 15. [Google Scholar] [CrossRef]
- Ibrahim, M.; Schoelermann, J.; Mustafa, K.; Cimpan, M.R. TiO2 Nanoparticles Disrupt Cell Adhesion and the Architecture of Cytoskeletal Networks of Human Osteoblast-like Cells in a Size Dependent Manner. J. Biomed. Mater. Res. Part A 2018, 106, 2582–2593. [Google Scholar] [CrossRef]
- Herrera-Rodríguez, M.A.; Del Pilar Ramos-Godinez, M.; Cano-Martínez, A.; Segura, F.C.; Ruiz-Ramírez, A.; Pavón, N.; Lira-Silva, E.; Bautista-Pérez, R.; Thomas, R.S.; Delgado-Buenrostro, N.L.; et al. Food-Grade Titanium Dioxide and Zinc Oxide Nanoparticles Induce Toxicity and Cardiac Damage after Oral Exposure in Rats. Part. Fibre Toxicol. 2023, 20, 43. [Google Scholar] [CrossRef]
- Men, S.K.; Cao, X.S.; Wang, Z. Comparative Study about Cytotoxicity with CuO Engineered Nanoparticles, TiO2 Engineered Nanoparticles, CeO2 Engineered Nanoparticles, Single-Walled Carbon Nanotubes. In Advanced Materials Research; Trans Tech Publications Ltd.: Bach, Switzerland, 2014; pp. 956–959. [Google Scholar] [CrossRef]
- Tilton, S.C.; Karin, N.J.; Tolic, A.; Xie, Y.; Lai, X.; Hamilton, R.F.; Waters, K.M.; Holian, A.; Witzmann, F.A.; Orr, G. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic and Proteomic Expression Patterns. Nanotoxicology 2014, 8, 533–548. [Google Scholar] [CrossRef]
- Chang, X.; Wang, X.; Li, J.; Shang, M.; Niu, S.; Zhang, W.; Li, Y.; Sun, Z.; Gan, J.; Li, W.; et al. Silver Nanoparticles Induced Cytotoxicity in HT22 Cells through Autophagy and Apoptosis via PI3K/AKT/mTOR Signaling Pathway. Ecotoxicol. Environ. Saf. 2021, 208, 111696. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, X.; Wang, B.; Xu, G.; Qin, Z.; Wang, J.; Wu, L.; Ju, X.; Bose, D.D.; Qiu, F.; et al. Zinc Oxide Nanoparticles Harness Autophagy to Induce Cell Death in Lung Epithelial Cells. Cell Death Dis. 2017, 8, e2954. [Google Scholar] [CrossRef] [PubMed]
- Anson, F.; Thayumanavan, S.; Hardy, J.A. Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes. JACS Au 2021, 1, 1240–1256. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, X.; Zhang, F.; Chen, D.; Ding, W. ZnO Nanoparticle-Induced Oxidative Stress Triggers Apoptosis by Activating JNK Signaling Pathway in Cultured Primary Astrocytes. Nanoscale Res. Lett. 2014, 9, 117. [Google Scholar] [CrossRef] [PubMed]
Feature | Extracellular Vesicles (EVs) | Nanoparticles (NPs) |
---|---|---|
Immunogenicity | Low immunogenicity due to natural composition; evade immune recognition [30,31] | Higher immunogenicity due to synthetic composition; often recognised as foreign particles [32,34] |
Biodistribution | Natural tropism towards specific tissues; efficient crossing of biological barriers [35,36] | Biodistribution influenced by physical and chemical properties; rapid clearance by RES [32,37] |
Targeting Ability | Inherent targeting ability based on cellular origin and surface proteins [36,38] | Targeting ability can be engineered through surface modifications [33,34] |
Therapeutic Efficacy | High therapeutic efficacy due to efficient delivery and minimal immune interference [36,38] | Variable therapeutic efficacy due to challenges in targeting and immune clearance [32,39] |
AI Method | Application Area | Specific Contribution | Outcomes | References |
---|---|---|---|---|
Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN) | Nanoparticle toxicity assessment | Modelling cytotoxicity based on size, charge, and surface chemistry | Accurate prediction of toxicity; reduction in animal testing | [23,24,92] |
Convolutional Neural Networks (CNNs) | EV-based diagnostics | Analysis of EV microstructural and morphological features | Accurate classification of breast cancer subtypes | [26] |
Explainable AI (XAI) | EV biomarker interpretation | Multi-omics feature selection and interpretability | Improved prediction transparency; liver disease staging | [91] |
Multi-omics integration with ML models | EV characterisation and functional profiling | Integration of proteomic and transcriptomic EV data | Improved reproducibility of EV-based therapy design | [25,28,95] |
Deep Learning, Hybrid Models | Nanoparticle design and biodistribution | Prediction of NP–drug interactions, tumour targeting, and BBB penetration | Optimised formulations; accelerated oncology and neurology applications | [93] |
AI-based formulation optimisation | Standardisation of NP production | Linking experimental conditions with NP quality parameters | Reduced variability; improved reproducibility across labs | [94] |
Hybrid AI models | Protein corona and immune interactions | Predicts clearance and opsonisation | Improved stealth strategies | [95,96,97] |
NP Type | Size/Dose | Experimental Model | Observed Effects | References |
---|---|---|---|---|
Silver (AgNPs) | 1.4–18 nm; 5–50 µg/mL | Hepatocytes, neuronal cells, rodents | ROS generation, mitochondrial damage, apoptosis (size-dependent) | [105,106,107,108,109,113,114] |
Gold (AuNPs) | 5–50 nm; chronic exposure | Rodent cortex, hippocampus | Bioaccumulation, altered signalling, neuroinflammation | [18,19,110,111,120,121,122,123] |
Zinc oxide (ZnO NPs) | 20–100 nm; >10 µg/mL | Hepatocytes, renal cells | ROS induction, mitochondrial dysfunction, apoptosis, and MAPK activation | [124,125,126,127,128,129] |
Copper oxide (CuO NPs) | 20–80 nm | Neuronal, epithelial cells | Strong ROS production, high cytotoxicity | [11] |
Iron oxide nanoparticles Fe3O4/Fe2O3 | 10–100 nm | Pulmonary/liver models | Lysosomal accumulation, inflammation | [130] |
Titanium dioxide (TiO2 NPs) | 10–100 nm; high doses | Epithelial cell lines | Mild ROS production, low acute toxicity; risk of chronic accumulation | [110,111,112,131,132,133,134,135,136] |
Silicon dioxide (SiO2 NPs) | 20–200 nm | Lung, liver cells | Low acute toxicity; chronic accumulation | [131,136] |
Single-walled carbon nanotubes (SWCNTs) | Diameter < 2 nm | Rodent lung models | Pulmonary inflammation, fibrosis, and ROS generation | [138] |
Multi-walled carbon nanotubes (MWCNTs) | Diameter > 10 nm | Rodent lung models | Lower reactivity, fibrosis and granuloma formation | [138] |
Polymeric NPs (PEG, PLGA) | 50–200 nm | Multiple in vivo models | Minimal cytotoxicity, biocompatible degradation, and immune activation at high doses | [16,17] |
Quantum dots (Cd-based QDs) | 2–10 nm | Neuronal, epithelial cells | Cd2+ release, ROS, DNA damage | [18,20,139,140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernad, E.S.; Vasilache, I.-A.; Bernad, R.L.; Hogea, L.; Ene, D.; Duica, F.; Tudora, B.; Bernad, S.I.; Craina, M.L.; Mateiovici, L.; et al. Extracellular Vesicles and Nanoparticles in Regenerative and Personalised Medicine: Diagnostic and Therapeutic Roles—A Narrative Review. Pharmaceutics 2025, 17, 1331. https://doi.org/10.3390/pharmaceutics17101331
Bernad ES, Vasilache I-A, Bernad RL, Hogea L, Ene D, Duica F, Tudora B, Bernad SI, Craina ML, Mateiovici L, et al. Extracellular Vesicles and Nanoparticles in Regenerative and Personalised Medicine: Diagnostic and Therapeutic Roles—A Narrative Review. Pharmaceutics. 2025; 17(10):1331. https://doi.org/10.3390/pharmaceutics17101331
Chicago/Turabian StyleBernad, Elena Silvia, Ingrid-Andrada Vasilache, Robert Leonard Bernad, Lavinia Hogea, Dragos Ene, Florentina Duica, Bogdan Tudora, Sandor Ianos Bernad, Marius Lucian Craina, Loredana Mateiovici, and et al. 2025. "Extracellular Vesicles and Nanoparticles in Regenerative and Personalised Medicine: Diagnostic and Therapeutic Roles—A Narrative Review" Pharmaceutics 17, no. 10: 1331. https://doi.org/10.3390/pharmaceutics17101331
APA StyleBernad, E. S., Vasilache, I.-A., Bernad, R. L., Hogea, L., Ene, D., Duica, F., Tudora, B., Bernad, S. I., Craina, M. L., Mateiovici, L., & Ene, R. (2025). Extracellular Vesicles and Nanoparticles in Regenerative and Personalised Medicine: Diagnostic and Therapeutic Roles—A Narrative Review. Pharmaceutics, 17(10), 1331. https://doi.org/10.3390/pharmaceutics17101331