Advancements in the Study of Biological Activities of Plant Extracts and Components

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: closed (30 June 2025) | Viewed by 5403

Special Issue Editors


E-Mail Website
Guest Editor
Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
Interests: natural product chemistry; enzyme kinetics; antioxidants; NMR; LC-MS

E-Mail Website
Guest Editor
Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
Interests: natural product chemistry; spectroscopy; antidiabetic; antimicrobial; molecular networking

Special Issue Information

Dear Colleagues,

The application of plant extracts and their constituents has been acknowledged in relation to various disorders since ancient times. These plants and their components have made important advancements in broadening our understanding in the realm of medical research. Advancements in analytical technologies have led to the discovery of many new bioactive compounds that exhibit a diverse spectrum of biological activities, such as antioxidant, antidiabetic, anti-inflammatory, and anticancer properties.

Research has further enhanced our understanding by elucidating the molecular mechanisms via which these plants and their compounds exert their effects, as well as pinpointing the specific pathways and targets involved. Similarly, the combined action of these plants demonstrates their function in improving medicinal applications. Ethnobotanical research plays a crucial role in identifying new medicinal plants and their components and their potential biological effects.

Taken together, these advancements in plant extracts and their compounds are valuable resources in the ongoing search for new drugs and treatments. We have organized this Special Issue to gather original research and reviews that demonstrate the progress of plant extracts and their bioactive compounds in the treatment of various diseases. 

Dr. Aizhamal Baiseitova
Dr. Abdul Bari Shah
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • enzyme kinetics
  • antioxidants
  • bioactive compounds
  • bioactive plant extracts

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 14667 KiB  
Article
Comparison of the Blood–Brain Barrier Penetration Ability and Anti-Neuroinflammatory Activity of Chromones in Two Types of Agarwood
by Mengyuan Yang, Yanan Yuan, Jingfan Wei, Yifei Pei, Yuanfei Niu, Yifan Zhao, Xiangying Kong and Zhijie Zhang
Pharmaceuticals 2025, 18(4), 510; https://doi.org/10.3390/ph18040510 - 31 Mar 2025
Viewed by 734
Abstract
Background/Objectives: Agarwood has a good neuroprotective effect and is often used to relieve anxiety and treat insomnia. This study compared the similarities and differences in the chromone components of two types of agarwood. It further investigated the absorption and brain distribution characteristics [...] Read more.
Background/Objectives: Agarwood has a good neuroprotective effect and is often used to relieve anxiety and treat insomnia. This study compared the similarities and differences in the chromone components of two types of agarwood. It further investigated the absorption and brain distribution characteristics of these components in rats and their neuroprotective effects mediated through anti-neuroinflammatory pathways. Methods: This study confirmed, through ITS2 barcoding and chloroplast genome analysis, that both the ordinary and Qi-Nan agarwood are derived from Aquilaria sinensis. A comparative analysis of chromones in ethanol extracts derived from ordinary and Qi-Nan agarwood, as well as those capable of penetrating the blood-brain barrier in vivo, was conducted using UPLC-Q-TOF-MS. Subsequently, an in vitro neuroinflammatory model was established via lipopolysaccharide (LPS)-stimulated BV-2 cells to evaluate the anti-neuroinflammatory activity of differential chromones. Results: UPLC-Q-TOF-MS characterization revealed the chromone components in the two types of agarwood: A total of 81 chromone compounds were identified in the ethanol extracts of ordinary agarwood (OAE) (20 THPECs, 42 FTPECs, and 19 BI), while 41 were identified in the ethanol extracts of Qi-Nan agarwood (QNE) (11 THPECs and 30 FTPECs). Pharmacokinetic analysis in rats showed that 14 components from OAE (eight THPECs and six FTPECs) penetrated the rat serum, and 10 of these 14 components penetrated the blood–brain barrier (BBB). Twelve FTPECs from QNE penetrated the rat serum, all of which penetrated the BBB. The total peak area of the total ion current (TIC) was calculated for the samples, and the TIC of the serum was compared to that of the brain tissue from the same rat to roughly estimate the ratio. The results demonstrated that the capability of FTPECs to traverse the blood–brain barrier is substantially superior to that of THPECs. Correspondingly, only FTPECs were detected using DESI-MS imaging; no THPECs were detected in rat brain tissue, and DESI-MS imaging localized FTPECs to neuroanatomic regions (cerebral cortex, thalamus, and hippocampus). In vitro neuroinflammatory assays revealed the superior anti-inflammatory efficacy of QNE over OAE (IL-6/TNF-α suppression, p < 0.05), correlating with its FTPEC-rich composition. Conclusions: Structure–activity relationships identified FTPECs as potent inhibitors of pro-inflammatory cytokines, exhibiting enhanced BBB penetration (blood–brain relative abundance > 1). These findings establish FTPECs as prioritized candidates for CNS-targeted therapeutics, with QNE’s pharmacological superiority attributed to its FTPEC dominance and optimized BBB transit capacity. Full article
Show Figures

Figure 1

20 pages, 2061 KiB  
Article
5,7-Dihydroxy-4-Methylcoumarin as a Functional Compound for Skin Pigmentation and Human Skin Safety
by Ye-Jin Lee, Yang Xu and Chang-Gu Hyun
Pharmaceuticals 2025, 18(4), 463; https://doi.org/10.3390/ph18040463 - 25 Mar 2025
Viewed by 684
Abstract
Background/Objectives: This study aims to investigate the effects of 5,7-dihydroxy-4-methylcoumarin (5,7D-4MC) on melanogenesis in B16F10 murine melanoma cells and to evaluate its safety as a potential ingredient for functional cosmetics and therapeutic agents targeting pigmentation-related disorders. Method: The cytotoxicity of 5,7D-4MC was assessed [...] Read more.
Background/Objectives: This study aims to investigate the effects of 5,7-dihydroxy-4-methylcoumarin (5,7D-4MC) on melanogenesis in B16F10 murine melanoma cells and to evaluate its safety as a potential ingredient for functional cosmetics and therapeutic agents targeting pigmentation-related disorders. Method: The cytotoxicity of 5,7D-4MC was assessed using an MTT assay, and melanin content and tyrosinase activity were measured at different concentrations (25, 50, 100 µM). Western blot analyses were conducted to evaluate the expression of key melanogenesis-related proteins (TYR, TRP-1, TRP-2, and MITF) and to investigate the regulation of major signaling pathways, including PKA/cAMP, GSK3β, and PI3K/AKT. Additionally, a human primary skin irritation test was performed on 32 participants to assess the dermatological safety of 5,7D-4MC. Results: 5,7D-4MC did not affect cell viability at concentrations below 100 µM and significantly promoted melanin production in a dose-dependent manner. Tyrosinase activity and the expression levels of melanogenic proteins increased significantly following 5,7D-4MC treatment. PKA and GSK3β pathways were activated, while the PI3K/AKT pathway was downregulated. The skin irritation test showed that 5,7D-4MC exhibited low irritation potential at concentrations of 50 µM and 100 µM. Conclusions: 5,7D-4MC enhances melanogenesis and demonstrates low skin irritation, making it a promising candidate for therapeutic applications in treating hypopigmentation disorders, such as vitiligo, as well as a functional cosmetic ingredient. However, further studies involving human melanocytes and clinical trials are required to validate their efficacy. Full article
Show Figures

Figure 1

27 pages, 2549 KiB  
Article
In Vitro Evaluation, Chemical Profiling, and In Silico ADMET Prediction of the Pharmacological Activities of Artemisia absinthium Root Extract
by Asma N. Alsaleh, Ibrahim M. Aziz, Reem M. Aljowaie, Rawan M. Alshalan, Noorah A. Alkubaisi and Mourad A. M. Aboul-Soud
Pharmaceuticals 2024, 17(12), 1646; https://doi.org/10.3390/ph17121646 - 7 Dec 2024
Cited by 1 | Viewed by 1738
Abstract
Artemisia absinthium L., is a plant with established pharmacological properties, but the A. absinthium root extract (AARE) remains unexplored. The aim of this study was to examine the chemical composition of AARE and assess its biological activity, which included antidiabetic, antibacterial, anticancer, and [...] Read more.
Artemisia absinthium L., is a plant with established pharmacological properties, but the A. absinthium root extract (AARE) remains unexplored. The aim of this study was to examine the chemical composition of AARE and assess its biological activity, which included antidiabetic, antibacterial, anticancer, and antioxidant properties. GC-MS was used to analyze the chemical components. The antioxidant activity of the total phenolic and flavonoid content was evaluated. Antibacterial activity and cytotoxic effects were identified. Enzyme inhibition experiments were performed to determine its antidiabetic potential. Molecular docking was utilized to evaluate the potential antioxidant, antibacterial, and anticancer activities of the compounds from AARE using Maestro 11.5 from the Schrödinger suite. AARE exhibited moderate antioxidant activity in DPPH (IC50: 172.41 ± 3.15 μg/mL) and ABTS (IC50: 378.94 ± 2.18 μg/mL) assays. Cytotoxicity tests on MCF-7 and HepG2 cancer cells demonstrated significant anticancer effects, with IC50 values of 150.12 ± 0.74 μg/mL and 137.11 ± 1.33 μg/mL, respectively. Apoptotic studies indicated an upregulation of pro-apoptotic genes (caspase-3, 8, 9, Bax) and a downregulation of anti-apoptotic markers (Bcl-2 and Bcl-Xl). AARE also inhibited α-amylase and α-glucosidase, suggesting potential antidiabetic effects, with IC50 values of 224.12 ± 1.17 μg/mL and 243.35 ± 1.51 μg/mL. Antibacterial assays revealed strong activity against Gram-positive bacteria. Molecular docking and pharmacokinetic analysis identified promising inhibitory effects of key AARE compounds on NADPH oxidase, E. coli Gyrase B, and Topoisomerase IIα, with favorable drug-like properties. These findings suggest AARE’s potential in treating cancer, diabetes, and bacterial infections, warranting further in vivo and clinical studies. Full article
Show Figures

Figure 1

32 pages, 8865 KiB  
Article
Cremastrae Pseudobulbus Pleiones Pseudobulbus (CPPP) Against Non-Small-Cell Lung Cancer: Elucidating Effective Ingredients and Mechanism of Action
by Yuxin Cao, Zhuangzhuang Hao, Mengmeng Liu, Jingwen Xue, Yuqing Wang, Yu Wang, Jiayuan Li, Yifan Lu, Chunguo Wang and Jinli Shi
Pharmaceuticals 2024, 17(11), 1515; https://doi.org/10.3390/ph17111515 - 11 Nov 2024
Cited by 1 | Viewed by 1493
Abstract
Cremastrae Pseudobulbus Pleiones Pseudobulbus (CPPP) is derived from the dried pseudobulb of the orchid family plants Cremastra appendiculata (D.Don) Makino, Pleione bulbocodioides (Franch.) Rolfe, or Pleione yunnanensis Rolfe, and has the properties of clearing heat, detoxification, resolving phlegm, and dispersing nodules. It is [...] Read more.
Cremastrae Pseudobulbus Pleiones Pseudobulbus (CPPP) is derived from the dried pseudobulb of the orchid family plants Cremastra appendiculata (D.Don) Makino, Pleione bulbocodioides (Franch.) Rolfe, or Pleione yunnanensis Rolfe, and has the properties of clearing heat, detoxification, resolving phlegm, and dispersing nodules. It is frequently used for the treatment of various malignant tumors in clinical practice, especially lung cancer. CPPP is divided into two commercial specifications in the market, Maocigu (MCG) and Bingqiuzi (BQZ). However, owing to a lack of appropriate research strategies, the active ingredients and molecular mechanisms involved have not yet been clarified. This study intended to discover the combination of effective anti-lung-cancer ingredients in CPPP and explore their potential mechanisms of action. In this study, UHPLC-MS fingerprints of MCG and BQZ were established separately. Inhibitory effects on the proliferative viability and migratory ability of A459 and H1299 cells were evaluated as pharmacodynamic indicators. GRA and BCA were used to determine spectrum–effect relationships. Next, the identification and analysis of components of drug-containing serum were performed using UHPLC-Q-Exactive Orbitrap MS. Then, the results of the two analyses were combined to jointly screen out the anti-lung-cancer candidate active monomers of CPPP, and their in vitro activities were verified. Afterward, all effective ingredient combinations of MCG (MCGC) and BQZ (BQZC) were prepared according to their contents in the original medicinal materials. Their anti-lung-cancer activities in vitro and in vivo were compared and verified. Finally, we used the human lung cancer cell line A549 and the Lewis tumor xenograft model to investigate how BQZC would influence autophagy and apoptosis processes and the mechanisms involved. Overall, 11 predominant anti-lung-cancer active ingredients from CPPP were screened. Next, MCGC and BQZC were prepared according to their contents in the original medicinal materials, respectively, and their anti-tumor effects were equivalent to those of the original materials in vitro and in vivo. We found that BQZC could inhibit lung cancer cell growth and induce protective autophagy and apoptosis in lung cancer cells by activating the AMPK–mTOR–ULK1/BMF signaling pathway. These results provide important evidence for the clinical application and deep development of CPPP against tumors. Full article
Show Figures

Figure 1

Back to TopTop