Special Issue "Gene Polymorphism and Nutrition: Relationships with Chronic Disease"

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Nutrigenetics and Nutrigenomics".

Deadline for manuscript submissions: closed (31 December 2021) | Viewed by 10594

Special Issue Editors

Dr. Daniel-Antonio de Luis Roman
E-Mail Website
Guest Editor
1. Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain
2. Instituto de Endocrinología y Nutrición (IENVA), Universidad de Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain
Interests: obesity; nutrigenetics; enteral nutrition; malnutrition related to the disease
Dr. Ana B. Crujeiras
E-Mail Website
Guest Editor
Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN). Rúa da Choupana, s/n, 15706 Santiago de Compostela, A Coruña, Spain
Interests: adipose tissue; nutrition; obesity; cancer; genetics; weight loss; weight regain

Special Issue Information

Dear Colleagues,

Studies of global human genomic variation have shown important population-based differences in allele frequencies of common single nucleotide polymorphisms (SNPs) that influence the expression of genes related with nutrition and, secondarily, with chronic disease. Some SNP sites have known functions or associations with diseases or other phenotype characteristics, including nutritional deficiencies and metabolism dietary components. There are many components of human diets that, when combined with the impact of diverse genetics on the metabolism of certain nutrients, have the capacity to give rise to harmful diet–gene interactions. This situation has the potential capacity to modify molecular phenotypes and clinical phenotypes, including human disease. Obesity, diabetes mellitus, chronobiology, osteoporosis, cancer, and many diseases are a field of potential investigation in this topic area. This Special Issue will include manuscripts that focus on the complex relationship between gene polymorphism and nutrition across all physiological and chronic diseases.

Dr. Daniel-Antonio de Luis Roman
Dr. Ana B. Crujeiras
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • chronic disease
  • personalized nutrition
  • single nucleotide polymorphism

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Article
FTO and ADRB2 Genetic Polymorphisms Are Risk Factors for Earlier Excessive Gestational Weight Gain in Pregnant Women with Pregestational Diabetes Mellitus: Results of a Randomized Nutrigenetic Trial
Nutrients 2022, 14(5), 1050; https://doi.org/10.3390/nu14051050 - 01 Mar 2022
Viewed by 1029
Abstract
Excessive gestational weight gain (GWG) is associated with increased risk of maternal and neonatal complications. We investigated obesity-related polymorphisms in the FTO gene (rs9939609, rs17817449) and ADRB2 (rs1042713, rs1042714) as candidate risk factors concerning excessive GWG in pregnant women with pregestational diabetes. This [...] Read more.
Excessive gestational weight gain (GWG) is associated with increased risk of maternal and neonatal complications. We investigated obesity-related polymorphisms in the FTO gene (rs9939609, rs17817449) and ADRB2 (rs1042713, rs1042714) as candidate risk factors concerning excessive GWG in pregnant women with pregestational diabetes. This nutrigenetic trial, conducted in Brazil, randomly assigned 70 pregnant women to one of the groups: traditional diet (n = 41) or DASH diet (n = 29). Excessive GWG was the total weight gain above the upper limit of the recommendation, according to the Institute of Medicine guidelines. Genotyping was performed using real-time PCR. Time-to-event analysis was performed to investigate risk factors for progression to excessive GWG. Regardless the type of diet, AT carriers of rs9939609 (FTO) and AA carriers of rs1042713 (ADRB2) had higher risk of earlier exceeding GWG compared to TT (aHR 2.44; CI 95% 1.03–5.78; p = 0.04) and GG (aHR 3.91; CI 95% 1.12–13.70; p = 0.03) genotypes, respectively, as the AG carriers for FTO haplotype rs9939609:rs17817449 compared to TT carriers (aHR 1.79; CI 95% 1.04–3.06; p = 0.02). Full article
(This article belongs to the Special Issue Gene Polymorphism and Nutrition: Relationships with Chronic Disease)
Show Figures

Graphical abstract

Article
Effects of Dietary Fat to Carbohydrate Ratio on Obesity Risk Depending on Genotypes of Circadian Genes
Nutrients 2022, 14(3), 478; https://doi.org/10.3390/nu14030478 - 22 Jan 2022
Viewed by 1179
Abstract
Although the impacts of macronutrients and the circadian clock on obesity have been reported, the interactions between macronutrient distribution and circadian genes are unclear. The aim of this study was to explore macronutrient intake patterns in the Korean population and associations between the [...] Read more.
Although the impacts of macronutrients and the circadian clock on obesity have been reported, the interactions between macronutrient distribution and circadian genes are unclear. The aim of this study was to explore macronutrient intake patterns in the Korean population and associations between the patterns and circadian gene variants and obesity. After applying the criteria, 5343 subjects (51.6% male, mean age 49.4 ± 7.3 years) from the Korean Genome and Epidemiology Study data and nine variants in seven circadian genes were analyzed. We defined macronutrient intake patterns by tertiles of the fat to carbohydrate ratio (FC). The very low FC (VLFC) was associated with a higher risk of obesity than the optimal FC (OFC). After stratification by the genotypes of nine variants, the obesity risk according to the patterns differed by the variants. In the female VLFC, the major homozygous allele of CLOCK rs11932595 and CRY1 rs3741892 had a higher abdominal obesity risk than those in the OFC. The GG genotype of PER2 rs2304672 in the VLFC showed greater risks for obesity and abdominal obesity. In conclusion, these findings suggest that macronutrient intake patterns were associated with obesity susceptibility, and the associations were different depending on the circadian clock genotypes of the CLOCK, PER2, and CRY1 loci. Full article
(This article belongs to the Special Issue Gene Polymorphism and Nutrition: Relationships with Chronic Disease)
Show Figures

Figure 1

Article
Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis
Nutrients 2022, 14(2), 360; https://doi.org/10.3390/nu14020360 - 15 Jan 2022
Cited by 4 | Viewed by 809
Abstract
The vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators, is crucial to calcitriol signalling. VDR is regulated by genetic and environmental factors and it is hypothesised that the response to vitamin D supplementation could be modulated by [...] Read more.
The vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators, is crucial to calcitriol signalling. VDR is regulated by genetic and environmental factors and it is hypothesised that the response to vitamin D supplementation could be modulated by genetic variants in the VDR gene. The best studied polymorphisms in the VDR gene are Apal (rs7975232), BsmI (rs1544410), Taql (rs731236) and Fokl (rs10735810). We conducted a systematic review and meta-analysis to evaluate the response to vitamin D supplementation according to the BsmI, TaqI, ApaI and FokI polymorphisms. We included studies that analysed the relationship between the response to vitamin D supplementation and the genotypic distribution of these polymorphisms. We included eight studies that enrolled 1038 subjects. The results showed no significant association with the BsmI and ApaI polymorphisms (p = 0.081 and p = 0.63) and that the variant allele (Tt+tt) of the TaqI polymorphism and the FF genotype of the FokI variant were associated with a better response to vitamin D supplementation (p = 0.02 and p < 0.001). In conclusion, the TaqI and FokI polymorphisms could play a role in the modulation of the response to vitamin D supplementation, as they are associated with a better response to supplementation. Full article
(This article belongs to the Special Issue Gene Polymorphism and Nutrition: Relationships with Chronic Disease)
Show Figures

Figure 1

Article
Vitamin D and the Risks of Depression and Anxiety: An Observational Analysis and Genome-Wide Environment Interaction Study
Nutrients 2021, 13(10), 3343; https://doi.org/10.3390/nu13103343 - 24 Sep 2021
Viewed by 2417
Abstract
Previous studies have suggested that vitamin D (VD) was associated with psychiatric diseases, but efforts to elucidate the functional relevance of VD with depression and anxiety from genetic perspective have been limited. Based on the UK Biobank cohort, we first calculated polygenic risk [...] Read more.
Previous studies have suggested that vitamin D (VD) was associated with psychiatric diseases, but efforts to elucidate the functional relevance of VD with depression and anxiety from genetic perspective have been limited. Based on the UK Biobank cohort, we first calculated polygenic risk score (PRS) for VD from genome-wide association study (GWAS) data of VD. Linear and logistic regression analysis were conducted to evaluate the associations of VD traits with depression and anxiety traits, respectively. Then, using individual genotype and phenotype data from the UK Biobank, genome-wide environment interaction studies (GWEIS) were performed to identify the potential effects of gene × VD interactions on the risks of depression and anxiety traits. In the UK Biobank cohort, we observed significant associations of blood VD level with depression and anxiety traits, as well as significant associations of VD PRS and depression and anxiety traits. GWEIS identified multiple candidate loci, such as rs114086183 (p = 4.11 × 10−8, LRRTM4) for self-reported depression status and rs149760119 (p = 3.88 × 10−8, GNB5) for self-reported anxiety status. Our study results suggested that VD was negatively associated with depression and anxiety. GWEIS identified multiple candidate genes interacting with VD, providing novel clues for understanding the biological mechanism potential associations between VD and psychiatric disorders. Full article
(This article belongs to the Special Issue Gene Polymorphism and Nutrition: Relationships with Chronic Disease)
Show Figures

Graphical abstract

Article
Association Study among Comethylation Modules, Genetic Polymorphisms and Clinical Features in Mexican Teenagers with Eating Disorders: Preliminary Results
Nutrients 2021, 13(9), 3210; https://doi.org/10.3390/nu13093210 - 15 Sep 2021
Cited by 1 | Viewed by 916
Abstract
Eating disorders are psychiatric disorders characterized by disturbed eating behaviors. They have a complex etiology in which genetic and environmental factors interact. Analyzing gene-environment interactions could help us to identify the mechanisms involved in the etiology of such conditions. For example, comethylation module [...] Read more.
Eating disorders are psychiatric disorders characterized by disturbed eating behaviors. They have a complex etiology in which genetic and environmental factors interact. Analyzing gene-environment interactions could help us to identify the mechanisms involved in the etiology of such conditions. For example, comethylation module analysis could detect the small effects of epigenetic interactions, reflecting the influence of environmental factors. We used MethylationEPIC and Psycharray microarrays to determine DNA methylation levels and genotype from 63 teenagers with eating disorders. We identified 11 comethylation modules in WGCNA (Weighted Gene Correlation Network Analysis) and correlated them with single nucleotide polymorphisms (SNP) and clinical features in our subjects. Two comethylation modules correlated with clinical features (BMI and height) in our sample and with SNPs associated with these phenotypes. One of these comethylation modules (yellow) correlated with BMI and rs10494217 polymorphism (associated with waist-hip ratio). Another module (black) was correlated with height, rs9349206, rs11761528, and rs17726787 SNPs; these polymorphisms were associated with height in previous GWAS. Our data suggest that genetic variations could alter epigenetics, and that these perturbations could be reflected as variations in clinical features. Full article
(This article belongs to the Special Issue Gene Polymorphism and Nutrition: Relationships with Chronic Disease)
Show Figures

Figure 1

Article
Adiponectin Gene Variant rs3774261, Effects on Lipid Profile and Adiponectin Levels after a High Polyunsaturated Fat Hypocaloric Diet with Mediterranean Pattern
Nutrients 2021, 13(6), 1811; https://doi.org/10.3390/nu13061811 - 26 May 2021
Cited by 2 | Viewed by 919
Abstract
The role of ADIPOQ gene variants on metabolic improvements after weight change secondary to different hypocaloric diets remained unclear. We evaluate the effect of rs3774261 of ADIPOQ gene polymorphism on biochemical improvements and weight change after high polyunsaturated fat hypocaloric diet with a [...] Read more.
The role of ADIPOQ gene variants on metabolic improvements after weight change secondary to different hypocaloric diets remained unclear. We evaluate the effect of rs3774261 of ADIPOQ gene polymorphism on biochemical improvements and weight change after high polyunsaturated fat hypocaloric diet with a Mediterranean dietary pattern for 12 weeks. A population of 361 obese subjects was enrolled in an intervention trial with a calorie restriction of 500 calories over the usual intake and 45.7% of carbohydrates, 34.4% of fats, and 19.9% of proteins. The percentages of different fats was; 21.8% of monounsaturated fats, 55.5% of saturated fats, and 22.7% of polyunsaturated fats. Before and after intervention, an anthropometric study, an evaluation of nutritional intake and a biochemical evaluation were realized. All patients lost weight regardless of genotype and diet used. After 12 weeks with a similar improvement in weight loss (AA vs. AG vs. GG); total cholesterol (delta: −28.1 ± 2.1 mg/dL vs. −14.2 ± 4.1 mg/dL vs. −11.0 ± 3.9 mg/dL; p = 0.02), LDL cholesterol (delta: −17.1 ± 2.1 mg/dL vs. −6.1 ± 1.9 mg/dL vs. −6.0 ± 2.3 mg/dL; p = 0.01), triglyceride levels (delta: −35.0 ± 3.6 mg/dL vs. 10.1 ± 3.2 mg/dL vs. −9.7 ± 3.1 mg/dL; p = 0.02), C reactive protein (CRP) (delta: −2.3 ± 0.1 mg/dL vs. −0.2 ± 0.1 mg/dL vs. −0.2 ± 0.1 mg/dL; p = 0.02), serum adiponectin (delta: 11.6 ± 2.9 ng/dL vs. 2.1 ± 1.3 ng/dL vs. 3.3 ± 1.1 ng/dL; p = 0.02) and adiponectin/leptin ratio (delta: 1.5 ± 0.1 ng/dL vs. 0.3 ± 0.2 ng/dL vs. 0.4 ± 0.3 ng/dL; p = 0.03), improved only in AA group. AA genotype of ADIPOQ variant (rs3774261) is related with a significant increase in serum levels of adiponectin and ratio adiponectin/leptin and decrease on lipid profile and C-reactive protein (CRP). Full article
(This article belongs to the Special Issue Gene Polymorphism and Nutrition: Relationships with Chronic Disease)
Show Figures

Graphical abstract

Review

Jump to: Research, Other

Review
Impact of Genetic Polymorphism on Response to Therapy in Non-Alcoholic Fatty Liver Disease
Nutrients 2021, 13(11), 4077; https://doi.org/10.3390/nu13114077 - 15 Nov 2021
Viewed by 1156
Abstract
In the last decades, the global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached pandemic proportions with derived major health and socioeconomic consequences; this tendency is expected to be further aggravated in the coming years. Obesity, insulin resistance/type 2 diabetes mellitus, sedentary [...] Read more.
In the last decades, the global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached pandemic proportions with derived major health and socioeconomic consequences; this tendency is expected to be further aggravated in the coming years. Obesity, insulin resistance/type 2 diabetes mellitus, sedentary lifestyle, increased caloric intake and genetic predisposition constitute the main risk factors associated with the development and progression of the disease. Importantly, the interaction between the inherited genetic background and some unhealthy dietary patterns has been postulated to have an essential role in the pathogenesis of NAFLD. Weight loss through lifestyle modifications is considered the cornerstone of the treatment for NAFLD and the inter-individual variability in the response to some dietary approaches may be conditioned by the presence of different single nucleotide polymorphisms. In this review, we summarize the current evidence on the influence of the association between genetic susceptibility and dietary habits in NAFLD pathophysiology, as well as the role of gene polymorphism in the response to lifestyle interventions and the potential interaction between nutritional genomics and other emerging therapies for NAFLD, such as bariatric surgery and several pharmacologic agents. Full article
(This article belongs to the Special Issue Gene Polymorphism and Nutrition: Relationships with Chronic Disease)
Show Figures

Graphical abstract

Other

Jump to: Research, Review

Systematic Review
Vitamin D and Type 1 Diabetes Risk: A Systematic Review and Meta-Analysis of Genetic Evidence
Nutrients 2021, 13(12), 4260; https://doi.org/10.3390/nu13124260 - 26 Nov 2021
Cited by 1 | Viewed by 991
Abstract
Several observational studies have examined vitamin D pathway polymorphisms and their association with type 1 diabetes (T1D) susceptibility, with inconclusive results. We aimed to perform a systematic review and meta-analysis assessing associations between selected variants affecting 25-hydroxyvitamin D [25(OH)D] and T1D risk. We [...] Read more.
Several observational studies have examined vitamin D pathway polymorphisms and their association with type 1 diabetes (T1D) susceptibility, with inconclusive results. We aimed to perform a systematic review and meta-analysis assessing associations between selected variants affecting 25-hydroxyvitamin D [25(OH)D] and T1D risk. We conducted a systematic search of Medline, Embase, Web of Science and OpenGWAS updated in April 2021. The following keywords “vitamin D” and/or “single nucleotide polymorphisms (SNPs)” and “T1D” were selected to identify relevant articles. Seven SNPs (or their proxies) in six genes were analysed: CYP2R1 rs10741657, CYP2R1 (low frequency) rs117913124, DHCR7/NADSYN1 rs12785878, GC rs3755967, CYP24A1 rs17216707, AMDHD1 rs10745742 and SEC23A rs8018720. Seven case-control and three cohort studies were eligible for quantitative synthesis (n = 10). Meta-analysis results suggested no association with T1D (range of pooled ORs for all SNPs: 0.97–1.02; p > 0.01). Heterogeneity was found in DHCR7/NADSYN1 rs12785878 (I2: 64.8%, p = 0.02). Sensitivity analysis showed exclusion of any single study did not alter the overall pooled effect. No association with T1D was observed among a Caucasian subgroup. In conclusion, the evidence from the meta-analysis indicates a null association between selected variants affecting serum 25(OH)D concentrations and T1D. Full article
(This article belongs to the Special Issue Gene Polymorphism and Nutrition: Relationships with Chronic Disease)
Show Figures

Figure 1

Back to TopTop