Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Inclusion Criteria and Search Strategy
2.2. Data Extraction
2.3. Statistical Analysis
3. Results
3.1. Identification and Selection of Relevant Studies
3.2. Study Characteristics
3.3. Meta-Analysis of the Association between Gene Variants in the VDR Gene and the Response to Vitamin D Supplementation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, M.D.; Sucheston-Campbell, L.E.; Campbell, M.J.; Vitamin, D. receptor and RXR in the post-genomic era. J. Cell Physiol. 2015, 230, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Haussler, M.R.; Whitfield, G.K.; Kaneko, I.; Haussler, C.A.; Hsieh, D.; Hsieh, J.-C.; Jurutka, P.W. Molecular Mechanisms of Vitamin D Action. Calcif. Tissue Int. 2013, 92, 77–98. [Google Scholar] [CrossRef]
- Reschly, E.J.; Krasowski, M.D. Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr. Drug Metab. 2006, 7, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Uitterlinden, A.G.; Fang, Y.; Van Meurs, J.B.J.; Pols, H.A.P.; Van Leeuwen, J.P.T.M. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, G.K.; Remus, L.S.; Jurutka, P.W.; Zitzer, H.; Oza, A.K.; Dang, H.T.L.; Haussler, C.A.; Galligan, M.A.; Thatcher, M.L.; Dominguez, C.E.; et al. Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol. Cell. Endocrinol. 2001, 177, 145–159. [Google Scholar] [CrossRef]
- Barger-Lux, M.J.; Heaney, R.P.; Hayes, J.; DeLuca, H.F.; Johnson, M.L.; Gong, G. Vitamin D receptor gene polymorphism, bone mass, body size, and vitamin D receptor density. Calcif. Tissue Int. 1995, 57, 161–162. [Google Scholar] [CrossRef]
- Li, L.; Wu, B.; Liu, J.-Y.; Yang, L.-B. Vitamin D receptor gene polymorphisms and type 2 diabetes: A meta-analysis. Arch. Med. Res. 2013, 44, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Bae, S.-C.; Choi, S.J.; Ji, J.D.; Song, G.G. Associations between vitamin D receptor polymorphisms and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: A meta-analysis. Mol. Biol. Rep. 2011, 38, 3643–3651. [Google Scholar] [CrossRef]
- Ortlepp, J.R.; Krantz, C.; Kimmel, M.; Von Korff, A.; Vesper, K.; Schmitz, F.; Mevissen, V.; Janssens, U.; Franke, A.; Hanrath, P. Additive effects of the chemokine receptor 2, vitamin D receptor, interleukin-6 polymorphisms and cardiovascular risk factors on the prevalence of myocardial infarction in patients below 65 years. Int. J. Cardiol. 2005, 105, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.-R.; Yao, M.; Sun, C.-Y.; Li, Z.-H.; Han, Z. BsmI, TaqI, ApaI and FokI polymorphisms in the vitamin D receptor (VDR) gene and risk of fracture in Caucasians: A meta-analysis. Bone 2010, 47, 681–686. [Google Scholar] [CrossRef]
- Saccone, D.; Asani, F.; Bornman, L. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene 2015, 561, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Lamberg-Allardt, C. Vitamin D in foods and as supplements. Prog. Biophys. Mol. Biol. 2006, 92, 33–38. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: A millenium perspective. J. Cell. Biochem. 2003, 88, 296–307. [Google Scholar] [CrossRef]
- Agarwal, K.S.; Mughal, M.Z.; Upadhyay, P.; Berry, J.L.; Mawer, E.B.; Puliyel, J.M. The impact of atmospheric pollution on vitamin D status of inf1ants and toddlers in Delhi, India. Arch. Dis. Child. 2002, 87, 111–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef]
- Fetahu, I.S.; Höbaus, J.; Kállay, E. Vitamin D and the epigenome. Front. Physiol. 2014, 5, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, H.; Miyamoto, K.; Taketani, Y.; Yamamoto, H.; Iemori, Y.; Morita, K.; Tonai, T.; Nishisho, T.; Mori, S.; Takeda, E. A vitamin D receptor gene polymorphism in the translation initiation codon: Effect on protein activity and relation to bone mineral density in Japanese women. J. Bone Miner. Res. 1997, 12, 915–921. [Google Scholar] [CrossRef]
- Barry, E.L.; Rees, J.R.; Peacock, J.L.; Mott, L.A.; Amos, C.I.; Bostick, R.M.; Figueiredo, J.C.; Ahnen, D.J.; Bresalier, R.S.; Burke, C.A.; et al. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J. Clin. Endocrinol. Metab. 2014, 99, E2133–E2137. [Google Scholar] [CrossRef] [Green Version]
- Elnenaei, M.O.; Chandra, R.; Mangion, T.; Moniz, C. Genomic and metabolomic patterns segregate with responses to calcium and vitamin D supplementation. Br. J. Nutr. 2011, 105, 71–79. [Google Scholar] [CrossRef]
- Graafmans, W.C.; Lips, P.; Ooms, M.E.; Van Leeuwen, J.P.; Pols, H.A.; Uitterlinden, A.G. The effect of vitamin D supplementation on the bone mineral density of the femoral neck is associated with vitamin D receptor genotype. J. Bone Miner. Res. 1997, 12, 1241–1245. [Google Scholar] [CrossRef]
- Serrano, J.C.E.; De Lorenzo, D.; Cassanye, A.; Martín-Gari, M.; Espinel, A.; Delgado, M.A.; Pamplona, R.; Portero-Otin, M. Vitamin D receptor BsmI polymorphism modulates soy intake and 25-hydroxyvitamin D supplementation benefits in cardiovascular disease risk factors profile. Genes Nutr. 2013, 8, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usategui-Martín, R.; Carbonell, C.; Novo-Veleiro, I.; Hernández-Pinchete, S.; Mirón-Canelo, J.A.; Chamorro, A.-J.; Marcos, M. Association between genetic variants in CYP2E1 and CTRC genes and susceptibility to alcoholic pancreatitis: A systematic review and meta-analysis. Drug Alcohol Depend. 2020, 209, 107873. [Google Scholar] [CrossRef] [PubMed]
- Usategui-Martín, R.; Pastor-Idoate, S.; Chamorro, A.J.; Fernández, I.; Fernández-Bueno, I.; Marcos-Martín, M.; González-Sarmiento, R.; Carlos Pastor, J. Meta-analysis of the rs243865 MMP-2 polymorphism and age-related macular degeneration risk. PLoS ONE 2019, 14, e0213624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentín-Bravo, F.J.; García-Onrubia, L.; Andrés-Iglesias, C.; Valentín-Bravo, E.; Martín-Vallejo, J.; Pastor, J.C.; Usategui-Martín, R.; Pastor-Idoate, S. Complications associated with the use of silicone oil in vitreoretinal surgery: A systemic review and meta-analysis. Acta Ophthalmol. 2021. [CrossRef]
- Review Manager (RevMan) [Computer Program]; Version 5.3; The Nordic Cochrane Centre, The Cochrane Collaboration: Copenhagen, UK, 2014.
- Al-Daghri, N.M.; Mohammed, A.K.; Al-Attas, O.S.; Ansari, M.G.A.; Wani, K.; Hussain, S.D.; Sabico, S.; Tripathi, G.; Alokail, M.S. Vitamin D Receptor Gene Polymorphisms Modify Cardiometabolic Response to Vitamin D Supplementation in T2DM Patients. Sci Rep. 2017, 7, 8280. [Google Scholar] [CrossRef] [Green Version]
- Arabi, A.; Zahed, L.; Mahfoud, Z.; El-Onsi, L.; Nabulsi, M.; Maalouf, J.; Fuleihan, G.E.-H. Vitamin D receptor gene polymorphisms modulate the skeletal response to vitamin D supplementation in healthy girls. Bone 2009, 45, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Kazemian, E.; Akbari, M.E.; Moradi, N.; Gharibzadeh, S.; Amouzegar, A.; Jamshidi-Naeini, Y.; Mondul, A.M.; Khademolmele, M.; Ghodoosi, N.; Zarins, K.R.; et al. Effect of vitamin D receptor polymorphisms on plasma oxidative stress and apoptotic biomarkers among breast cancer survivors supplemented vitamin D3. Eur. J. Cancer Prev. 2020, 29, 433–444. [Google Scholar] [CrossRef]
- Mohseni, H.; Amani, R.; Hosseini, S.A.; Ekrami, A.; Ahmadzadeh, A.; Latifi, S.M. Genetic Variations in VDR could Modulate the Efficacy of Vitamin D3 Supplementation on Inflammatory Markers and Total Antioxidant Capacity among Breast Cancer Women: A Randomized Double Blind Controlled Trial. Asian Pac. J. Cancer Prev. 2019, 20, 2065–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neyestani, T.R.; Djazayery, A.; Shab-Bidar, S.; Eshraghian, M.R.; Kalayi, A.; Shariátzadeh, N.; Khalaji, N.; Zahedirad, M.; Gharavi, A.; Houshiarrad, A.; et al. Vitamin D Receptor Fok-I polymorphism modulates diabetic host response to vitamin D intake: Need for a nutrigenetic approach. Diabetes Care. 2013, 36, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Alonso, M.; Briongos, L.-S.; Ruiz-Mambrilla, M.; Velasco, E.A.; Olmos, J.M.; De Luis, D.; Dueñas-Laita, A.; Pérez-Castrillón, J.-L. Association Between Bat Vitamin D Receptor 3′ Haplotypes and Vitamin D Levels at Baseline and a Lower Response After Increased Vitamin D Supplementation and Exposure to Sunlight. Int. J. Vitam. Nutr. Res. 2020, 90, 290–294. [Google Scholar] [CrossRef]
- Sanwalka, N.; Khadilkar, A.; Chiplonkar, S.; Khatod, K.; Phadke, N.; Khadilkar, V. Influence of Vitamin D Receptor Gene Fok1 Polymorphism on Bone Mass Accrual Post Calcium and Vitamin D Supplementation. Indian J. Pediatr. 2015, 82, 985–990. [Google Scholar] [CrossRef]
- Cochrane Handbook for Systematic Reviews of Interventions. Available online: http://handbook-5-1.cochrane.org (accessed on 21 November 2021).
- De Martinis, M.; Allegra, A.; Sirufo, M.M.; Tonacci, A.; Pioggia, G.; Raggiunti, M.; Ginaldi, L.; Gangemi, S. Vitamin D Deficiency, Osteoporosis and Effect on Autoimmune Diseases and Hematopoiesis: A Review. Int. J. Mol. Sci. 2021, 22, 8855. [Google Scholar] [CrossRef] [PubMed]
- Priemel, M.; Von Domarus, C.; Klatte, T.O.; Kessler, S.; Schlie, J.; Meier, S.; Proksch, N.; Pastor, F.; Netter, C.; Streichert, T.; et al. Bone mineralization defects and vitamin D deficiency: Histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J. Bone Miner. Res. 2010, 25, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N. Does Low Vitamin D Status Contribute to “Age-Related” Morbidity? J. Bone Miner. Res. 2007, 22, V55–V58. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.M.P.; Eslick, G.D.; Nowson, C.; Smith, C.; Bensoussan, A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. Lancet 2007, 370, 657–666. [Google Scholar] [CrossRef]
- Chevalley, T.; Rizzoli, R.; Nydegger, V.; Slosman, D.; Rapin, C.H.; Michel, J.P.; Vasey, H.; Bonjour, J.-P. Effects of calcium supplements on femoral bone mineral density and vertebral fracture rate in vitamin-D-replete elderly patients. Osteoporos. Int. 1994, 4, 245–252. [Google Scholar] [CrossRef]
- Boonen, S.; Lips, P.; Bouillon, R.; Bischoff-Ferrari, H.A.; Vanderschueren, D.; Haentjens, P. Need for additional calcium to reduce the risk of hip fracture with vitamin d supplementation: Evidence from a comparative metaanalysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2007, 92, 1415–1423. [Google Scholar] [CrossRef] [Green Version]
- Moradi, S.; Khorrami-Nezhad, L.; Maghbooli, Z.; Hosseini, B.; Keshavarz, S.A.; Mirzaei, K. Vitamin D Receptor Gene Variation, Dietary Intake and Bone Mineral Density in Obese Women: A Cross Sectional Study. J. Nutr. Sci. Vitaminol. 2017, 63, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Abrams, S.A.; Griffin, I.J.; Hawthorne, K.M.; Chen, Z.; Gunn, S.K.; Wilde, M.; Darlington, G.; Shypailo, R.J.; Ellis, K.J. Vitamin D receptor Fok1 polymorphisms affect calcium absorption, kinetics, and bone mineralization rates during puberty. J. Bone Miner. Res. 2005, 20, 945–953. [Google Scholar] [CrossRef]
- Ames, S.K.; Ellis, K.J.; Gunn, S.K.; Copeland, K.C.; Abrams, S.A. Vitamin D receptor gene Fok1 polymorphism predicts calcium absorption and bone mineral density in children. J. Bone Miner. Res. 1999, 14, 740–746. [Google Scholar] [CrossRef]
- Moffett, S.P.; Zmuda, J.M.; Cauley, J.A.; Ensrud, K.; A Hillier, T.; Hochberg, M.C.; Li, J.; Cayabyab, S.; Lee, J.M.; Peltz, G.; et al. Association of the VDR Translation Start Site Polymorphism and Fracture Risk in Older Women. J. Bone Miner. Res. 2007, 22, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.C. Vitamin D and Aging. Endocrinol. Metab. Clin. N. Am. 2013, 42, 319–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdoia, M.; Schaffer, A.; Barbieri, L.; Di Giovine, G.; Marino, P.; Suryapranata, H.; De Luca, G. Impact of gender difference on vitamin D status and its relationship with the extent of coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 464–470. [Google Scholar] [CrossRef] [PubMed]
Authors, Year | N | Age [Years (SD)] | Gender [n (%)] | Country | Vitamin D Dose | Follow-Up Time | |
---|---|---|---|---|---|---|---|
Women | Men | ||||||
Graafmans et al., 1997 | 81 | 78 (5) | 81 (100%) | 0 (0%) | Netherlands | 400 IU/24 h | 12 months |
Arabi et al., 2009 | 167 | 10 to 17 | 167 (100%) | 0 (0%) | Lebanon | 1100 IU/24 h | 12 months |
Neyestani et al., 2013 | 140 | 29 to 67 | - | - | Iran | 1000 IU/24 h | 3 months |
Sanwalka et al., 2015 | 102 | 11.2 (0.5) | 102 (100%) | 0 (0%) | India | 333 IU/24 h | 12 months |
Al-Daghri et al., 2017 | 199 | >18 | 114 (57.2%) | 90 (42.8%) | Saudi Arabia | 2000 IU/24 h | 12 months |
Mohseni et al., 2018 | 26 | 47.7 (8.0) | 26 (100%) | 0 (0%) | Iran | 7000 IU/24 h | 2 months |
Pérez-Alonso et al., 2019 | 142 | 55 (4) | 142 (100%) | 0 (0%) | Spain | 800 IU/24 h | 3 months |
Kazemian et al., 2020 | 176 | 48.6 (8.7) | 176 (100%) | 0 (0%) | Iran | 4000 IU/24 h | 3 months |
Authors, Year | Vitamin D Levels BEFORE Supplementation, ng/mL [Mean (SD)] | Vitamin D Levels AFTER Supplementation, ng/mL [Mean (SD)] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs1544410 (BsmI) | rs731236 (TaqI) | rs7975232 (ApaI) | rs10735810 (FokI) | rs1544410 (BsmI) | rs731236 (TaqI) | rs7975232 (ApaI) | rs10735810 (FokI) | |||||||||
BB | Bd+dd | TT | Tt+tt | AA | Aa+aa | FF | Ff+ff | BB | Bd+dd | TT | Tt+tt | AA | Aa+aa | FF | Ff+ff | |
Graafmans et al., 1997 | 26 (7.5) | 29.2 (8.5) | - | - | - | - | - | - | 30.1 (10.1) | 25.75 (14.8) | - | - | - | - | - | - |
Arabi et al., 2009 | 14.3 (9.4) | 14.25 (7.9) | 14.0 (8.5) | 13.9 (7.7) | - | - | - | - | 27.64 (14.5) | 26.11 (12.3) | 23.39 (15.6) | 29.64 (15.5) | - | - | - | - |
Neyestani et al., 2013 | - | - | - | - | - | - | 38.1 (21.5) | 37.9 (16.7) | - | - | - | - | - | - | 73.6 (25) | 65 (24.3) |
Sanwalka et al., 2015 | - | - | - | - | - | - | 27.77 (3.1) | 22.8 (2.04) | - | - | - | - | - | - | 61.72 (6.2) | 47.02 (8.9) |
Al-Daghri et al., 2017 | 31.1 (14) | 34 (11.1) | 31.9 (12.7) | 33.8 (11.6) | 35.1 (9.5) | 33.3 (12.4) | 33 (12.4) | 34.8 (11.1) | 50.1 (14.7) | 55.6 (17.3) | 51.2 (13.6) | 55.4 (17.8) | 56.2 (13.3) | 54 (18.2) | 57.4 (17.3) | 47.9 (13.8) |
Mohseni et al., 2018 | 9.0 (1.4) | 12.75 (1.4) | 16.5 (4.6) | 12.2 (1.5) | 13.6 (1.3) | 13.6 (2.7) | 13.0 (1.0) | 11.2 (1.4) | 11.0 (1.4) | 16.7 (4.3) | 11.5 (1.2) | 14.6 (1.5) | 14.8 (3.2) | 14.6 (3.1) | 28.0 (12) | 15.3 (3.1) |
Pérez-Alonso et al., 2019 | 21 (10) | 24.5 (9) | 25 (9) | 23 (9.5) | 23 (10) | 24 (9) | - | - | 28 (9) | 30.5 (10) | 31 (8) | 30 (9) | 29 (9.5) | 31.1 (9.5) | - | - |
Kazemian et al., 2020 | 30.2 (11.4) | 41.7 (16.9) | 31.8 (10.4) | 37.4 (11.3) | 40.9 (14.2) | 31.35 (11.4) | 34.4 (12.4) | 30.8 (9.4) | 99.3 (34) | 131.2 (29) | 105.3 (31.5) | 118.9 (29.4) | 111 (21.4) | 98.3 (23) | 114.9 (34) | 107.8 (23) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usategui-Martín, R.; De Luis-Román, D.-A.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.-L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 360. https://doi.org/10.3390/nu14020360
Usategui-Martín R, De Luis-Román D-A, Fernández-Gómez JM, Ruiz-Mambrilla M, Pérez-Castrillón J-L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(2):360. https://doi.org/10.3390/nu14020360
Chicago/Turabian StyleUsategui-Martín, Ricardo, Daniel-Antonio De Luis-Román, José María Fernández-Gómez, Marta Ruiz-Mambrilla, and José-Luis Pérez-Castrillón. 2022. "Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis" Nutrients 14, no. 2: 360. https://doi.org/10.3390/nu14020360
APA StyleUsategui-Martín, R., De Luis-Román, D. -A., Fernández-Gómez, J. M., Ruiz-Mambrilla, M., & Pérez-Castrillón, J. -L. (2022). Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients, 14(2), 360. https://doi.org/10.3390/nu14020360