E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Nutrition and Central Nervous System"

A special issue of Nutrients (ISSN 2072-6643).

Deadline for manuscript submissions: 31 October 2019

Special Issue Editor

Guest Editor
PD Dr. M. Hasan Mohajeri

University of Zurich, Switzerland
Website | E-Mail
Interests: brain, aging, Alzheimer, neurodegeneration, ADHD, nutrition, gut-brain axis

Special Issue Information

Dear Colleagues,

The focus of this Special Issue is “Nutrition and the Central Nervous System”. The brain is, as a very specialized and one of the most metabolically active organs of the body, dependent on a steady and sufficient supply of dietary ingredients. The critical role of the diet for brain development as well as for proper CNS functioning and the possible preventative roles against neurodegenerative and neurological conditions is commonly accepted. The overarching aim of this SI is pinpointing the mechanisms of action and publishing state-of-the art contributions discussing the roles that nutritional compounds play in the development, maintenance and aging of the CNS.

The mode of action of a given ingredient, the specific effect of a certain diet on a CNS function or disease, as well as epidemiological evaluations demonstrating the consequences of a change in the microbiome affecting brain function will be considered for publication. We encourage the submission of original research articles, reviews, and meta-analyses. Potential topics may include, but are not limited to:

  • Central nervous system
  • Neurogenesis
  • Brain development
  • Brain aging
  • Microbiome and brain
  • Age-related brain dysfunction
  • Dietary bioactives
  • Malnutrition
  • Nutrition and chronic conditions
  • Genetic predisposition

PD Dr. M. Hasan Mohajeri
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Central nervous system
  • Neurogenesis
  • Brain development
  • Brain aging
  • Microbiome and brain
  • Age-related brain dysfunction
  • Dietary bioactives
  • Malnutrition
  • Nutrition and chronic conditions
  • Genetic predisposition

Published Papers (5 papers)

View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Natural Dietary Supplementation of Curcumin Protects Mice Brains against Ethanol-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment via Nrf2/TLR4/RAGE Signaling
Nutrients 2019, 11(5), 1082; https://doi.org/10.3390/nu11051082
Received: 3 April 2019 / Revised: 9 May 2019 / Accepted: 14 May 2019 / Published: 15 May 2019
Cited by 1 | PDF Full-text (8170 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the current study was to explore the underlying neuroprotective mechanisms of curcumin (50 mg/kg, for six weeks) against ethanol (5 mg/kg i.p., for six weeks) induced oxidative stress and inflammation-mediated cognitive dysfunction in mice. According to our findings, ethanol triggered [...] Read more.
The aim of the current study was to explore the underlying neuroprotective mechanisms of curcumin (50 mg/kg, for six weeks) against ethanol (5 mg/kg i.p., for six weeks) induced oxidative stress and inflammation-mediated cognitive dysfunction in mice. According to our findings, ethanol triggered reactive oxygen species (ROS), apoptosis, neuroinflammation, and memory impairment, which were significantly inhibited with the administration of curcumin, as assessed by ROS, lipid peroxidation (LPO), and Nrf2/HO-1 (nuclear factor erythroid 2-related factor 2/Heme-oxygenase-1) expression in the experimental mice brains. Moreover, curcumin regulated the expression of the glial cell markers in ethanol-treated mice brains, as analyzed by the relative expression TLR4 (Toll like Receptor 4), RAGE (Receptor for Advanced Glycations End products), GFAP (Glial fibrillary acidic protein), and Iba-1 (Ionized calcium binding adaptor molecule 1), through Western blot and confocal microscopic analysis. Moreover, our results showed that curcumin downregulated the expression of p-JNK (Phospo c-Jun N-Terminal Kinase), p-NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells), and its downstream targets, as assessed by Western blot and confocal microscopic analysis. Finally, the expression of synaptic proteins and the behavioral results also supported the hypothesis that curcumin may inhibit memory dysfunction and behavioral alterations associated with ethanol intoxication. Altogether, to the best of our knowledge, we believe that curcumin may serve as a potential, promising, and cheaply available neuroprotective compound against ethanol-associated neurodegenerative diseases. Full article
(This article belongs to the Special Issue Nutrition and Central Nervous System)
Figures

Graphical abstract

Open AccessArticle
The Chinese Herbal Formula PAPZ Ameliorates Behavioral Abnormalities in Depressive Mice
Nutrients 2019, 11(4), 859; https://doi.org/10.3390/nu11040859
Received: 11 March 2019 / Revised: 7 April 2019 / Accepted: 12 April 2019 / Published: 16 April 2019
PDF Full-text (1991 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Major depressive disorder (MDD) is a chronic mental disorder characterized by mixed symptoms and complex pathogenesis. With long history of practical application, traditional Chinese medicine (TCM) offers many herbs for the treatment and rehabilitation of chronic disease. In this study, we developed a [...] Read more.
Major depressive disorder (MDD) is a chronic mental disorder characterized by mixed symptoms and complex pathogenesis. With long history of practical application, traditional Chinese medicine (TCM) offers many herbs for the treatment and rehabilitation of chronic disease. In this study, we developed a modified Chinese herbal formula using Panax ginseng, Angelica Sinensis, Polygala tenuifolia Willd, and Ziziphi spinosae Semen (PAPZ), based on an ancient TCM prescription. The antidepressant effects of PAPZ were investigated with a corticosterone (CORT) model of depression in mice. Our results showed that administration of PAPZ ameliorated depression-like phenotypes in the CORT model. An anatomic study showed that chronic PAPZ administration upregulated the protein expression of brain-derived neurotrophic factor (BDNF) in hippocampal tissue. The enzyme activity of superoxide dismutase was enhanced in hippocampal tissue, in line with a decreased malondialdehyde level. Taken together, these findings suggested that PAPZ has therapeutic effects in a mice depression model through increasing protein expression of BDNF and improving the anti-oxidation ability of the brain. Full article
(This article belongs to the Special Issue Nutrition and Central Nervous System)
Figures

Figure 1

Open AccessArticle
Palatability of Goat’s versus Cow’s Milk: Insights from the Analysis of Eating Behavior and Gene Expression in the Appetite-Relevant Brain Circuit in Laboratory Animal Models
Nutrients 2019, 11(4), 720; https://doi.org/10.3390/nu11040720
Received: 11 February 2019 / Revised: 17 March 2019 / Accepted: 25 March 2019 / Published: 28 March 2019
PDF Full-text (1397 KB) | HTML Full-text | XML Full-text
Abstract
Goat’s (GM) and cow’s milk (CM) are dietary alternatives with select health benefits shown in human and animal studies. Surprisingly, no systematic analysis of palatability or preference for GM vs. CM has been performed to date. Here, we present a comprehensive investigation of [...] Read more.
Goat’s (GM) and cow’s milk (CM) are dietary alternatives with select health benefits shown in human and animal studies. Surprisingly, no systematic analysis of palatability or preference for GM vs. CM has been performed to date. Here, we present a comprehensive investigation of short-term intake and palatability profiles of GM and CM in laboratory mice and rats. We studied consumption in no-choice and choice scenarios, including meal microstructure, and by using isocaloric milks and milk-enriched solid diets. Feeding results are accompanied by qPCR data of relevant genes in the energy balance-related hypothalamus and brain stem, and in the nucleus accumbens, which regulates eating for palatability. We found that GM and CM are palatable to juvenile, adult, and aged rodents. Given a choice, animals prefer GM- to CM-based diets. Analysis of meal microstructure using licking patterns points to enhanced palatability of and, possibly, greater motivation toward GM over CM. Most profound changes in gene expression after GM vs. CM were associated with the brain systems driving consumption for reward. We conclude that, while both GM and CM are palatable, GM is preferred over CM by laboratory animals, and this preference is driven by central mechanisms controlling eating for pleasure. Full article
(This article belongs to the Special Issue Nutrition and Central Nervous System)
Figures

Figure 1

Open AccessArticle
Tryptophan-Tyrosine Dipeptide, the Core Sequence of β-Lactolin, Improves Memory by Modulating the Dopamine System
Nutrients 2019, 11(2), 348; https://doi.org/10.3390/nu11020348
Received: 10 January 2019 / Revised: 2 February 2019 / Accepted: 3 February 2019 / Published: 6 February 2019
PDF Full-text (1335 KB) | HTML Full-text | XML Full-text
Abstract
Tryptophan-tyrosine (WY)-related peptides including the β-lactopeptide of the glycine-threonine-tryptophan-tyrosine peptide, β-lactolin, improve spatial memory. However, whether and how the WY dipeptide as the core sequence in WY-related peptides improves memory functions has not been investigated. This study assessed the pharmacological effects of the [...] Read more.
Tryptophan-tyrosine (WY)-related peptides including the β-lactopeptide of the glycine-threonine-tryptophan-tyrosine peptide, β-lactolin, improve spatial memory. However, whether and how the WY dipeptide as the core sequence in WY-related peptides improves memory functions has not been investigated. This study assessed the pharmacological effects of the WY dipeptide on memory impairment to elucidate the mechanisms. Here, we showed that oral administration of dipeptides of WY, tryptophan-methionine (WM), tryptophan-valine, tryptophan-leucine, and tryptophan-phenylalanine improved spontaneous alternation of the Y-maze test in scopolamine-induced amnesic mice. In contrast, tyrosine-tryptophan, methionine-tryptophan, tryptophan, tyrosine, and methionine had no effect. These results indicated that the conformation of dipeptides with N-terminal tryptophan is required for their memory improving effects. WY dipeptide inhibited the monoamine oxidase B activity in vitro and increased dopamine levels in the hippocampus and frontal cortex, whereas tryptophan did not cause these effects. In addition, the treatment with SCH-23390, a dopamine D1-like receptor antagonist, and the knockdown of the hippocampal dopamine D1 receptor partially attenuated the memory improvement induced by the WY dipeptide. Importantly, WY dipeptide improved the spontaneous alternations of the Y-maze test in aged mice. These results suggest that the WY dipeptide restores memory impairments by augmenting dopaminergic activity. The development of supplements rich in these peptides might help to prevent age-related cognitive decline. Full article
(This article belongs to the Special Issue Nutrition and Central Nervous System)
Figures

Figure 1

Review

Jump to: Research

Open AccessReview
From Probiotics to Psychobiotics: Live Beneficial Bacteria Which Act on the Brain-Gut Axis
Nutrients 2019, 11(4), 890; https://doi.org/10.3390/nu11040890
Received: 21 March 2019 / Revised: 16 April 2019 / Accepted: 18 April 2019 / Published: 20 April 2019
PDF Full-text (3208 KB) | HTML Full-text | XML Full-text
Abstract
There is an important relationship between probiotics, psychobiotics and cognitive and behavioral processes, which include neurological, metabolic, hormonal and immunological signaling pathways; the alteration in these systems may cause alterations in behavior (mood) and cognitive level (learning and memory). Psychobiotics have been considered [...] Read more.
There is an important relationship between probiotics, psychobiotics and cognitive and behavioral processes, which include neurological, metabolic, hormonal and immunological signaling pathways; the alteration in these systems may cause alterations in behavior (mood) and cognitive level (learning and memory). Psychobiotics have been considered key elements in affective disorders and the immune system, in addition to their effect encompassing the regulation of neuroimmune regulation and control axes (the hypothalamic-pituitary-adrenal axis or HPA, the sympathetic-adrenal-medullary axis or SAM and the inflammatory reflex) in diseases of the nervous system. The aim of this review is to summarize the recent findings about psychobiotics, the brain-gut axis and the immune system. The review focuses on a very new and interesting field that relates the microbiota of the intestine with diseases of the nervous system and its possible treatment, in neuroimmunomodulation area. Indeed, although probiotic bacteria will be concentrated after ingestion, mainly in the intestinal epithelium (where they provide the host with essential nutrients and modulation of the immune system), they may also produce neuroactive substances which act on the brain-gut axis. Full article
(This article belongs to the Special Issue Nutrition and Central Nervous System)
Figures

Graphical abstract

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

  1. Jan Frank

Email: [email protected]

Affiliation: Division of Biofunctionality and Safety of Food, Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany

Tentative topic: Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice - Impact on bioavailability

2. Christophe Lacroix

Email: [email protected]

Affiliation: Dep. of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland

Tentative topic: Protein Intake is Associated with Human Episodic Memory

3. M. Hasan Mohajeri

E-Mail: [email protected]

Affiliation: University of Zurich, Switzerland

Tentative topic: Effects of Vitamin E on Cognitive Performance during Ageing

Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top