Special Issue "Advanced Nanocellulose-Based Materials: Production, Properties and Applications"

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanocomposite Materials".

Deadline for manuscript submissions: 30 June 2021.

Special Issue Editors

Dr. Carla Vilela
E-Mail Website
Guest Editor
CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
Interests: sustainable use of biopolymers (nanocellulose, chitosan, pullulan, proteins, etc.) for the design of functional nanostructured materials for biomedical (e.g., drug delivery and wound healing) and technological (e.g., active packaging, fuel cells, and water remediation) applications
Special Issues and Collections in MDPI journals
Prof. Dr. Carmen S. R. Freire
E-Mail Website
Guest Editor
CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
Interests: production and application of biogenic nanofibers (bacterial cellulose and protein fibrils); nanostructured biocomposites; bio-based materials for biomedical applications (wound healing, drug delivery and 3D-bioprinting); biocomposites and functional paper materials; chemical modification of (nano)cellulose fibers and other polysaccharides and their characterization and applications; chemistry of lignocellulosic materials (cellulose, wood, cork, etc.)
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Bacterial nanocellulose (BNC), cellulose nanocrystals (CNCs), and cellulose nanofibers (CNFs) are three nanometric forms of the most abundant natural polymer (viz. cellulose), and are currently at the spotlight in numerous fields of modern science and technology. The eco-friendly connotation, peculiar features, and multiple functionalities of these nanoscale cellulosic substrates are being explored to engineer advanced nanocomposites and nanohybrid materials for application in manifold domains, such as mechanics, optics, electronics, energy, environment, biology, and medicine.

The aim of this Special Issue titled “Advanced Nanocellulose-Based Materials: Production, Properties, and Applications” is to gather a collection of original research and review contributions from the world-leading scientists working with nanocellulose. Thus, research that is representative of the current developments dealing with the production methodologies, properties, and applications of nanocellulose-based materials (e.g., nanocomposites, hybrids, aerogels, hydrogels, films, and fibers), are very welcome to the Special Issue.

Dr. Carla Vilela
Dr. Carmen S.R. Freire
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bacterial nanocellulose
  • cellulose nanocrystals
  • cellulose nanofibers
  • nanocomposites
  • hybrids
  • aerogels
  • films
  • fibers
  • biomedical applications
  • technological applications

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessFeature PaperArticle
The Effect of High Lignin Content on Oxidative Nanofibrillation of Wood Cell Wall
Nanomaterials 2021, 11(5), 1179; https://doi.org/10.3390/nano11051179 - 29 Apr 2021
Viewed by 385
Abstract
Wood from field-grown poplars with different genotypes and varying lignin content (17.4 wt % to 30.0 wt %) were subjected to one-pot 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl catalyzed oxidation and high-pressure homogenization in order to investigate nanofibrillation following simultaneous delignification and cellulose oxidation. When comparing low and [...] Read more.
Wood from field-grown poplars with different genotypes and varying lignin content (17.4 wt % to 30.0 wt %) were subjected to one-pot 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl catalyzed oxidation and high-pressure homogenization in order to investigate nanofibrillation following simultaneous delignification and cellulose oxidation. When comparing low and high lignin wood it was found that the high lignin wood was more easily fibrillated as indicated by a higher nanofibril yield (68% and 45%) and suspension viscosity (27 and 15 mPa·s). The nanofibrils were monodisperse with diameter ranging between 1.2 and 2.0 nm as measured using atomic force microscopy. Slightly less cellulose oxidation (0.44 and 0.68 mmol·g−1) together with a reduced process yield (36% and 44%) was also found which showed that the removal of a larger amount of lignin increased the efficiency of the homogenization step despite slightly reduced oxidation of the nanofibril surfaces. The surface area of oxidized high lignin wood was also higher than low lignin wood (114 m2·g−1 and 76 m2·g−1) which implicates porosity as a factor that can influence cellulose nanofibril isolation from wood in a beneficial manner. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Ice-Templated Cellulose Nanofiber Filaments as a Reinforcement Material in Epoxy Composites
Nanomaterials 2021, 11(2), 490; https://doi.org/10.3390/nano11020490 - 15 Feb 2021
Viewed by 930
Abstract
Finding renewable alternatives to the commonly used reinforcement materials in composites is attracting a significant amount of research interest. Nanocellulose is a promising candidate owing to its wide availability and favorable properties such as high Young’s modulus. This study addressed the major problems [...] Read more.
Finding renewable alternatives to the commonly used reinforcement materials in composites is attracting a significant amount of research interest. Nanocellulose is a promising candidate owing to its wide availability and favorable properties such as high Young’s modulus. This study addressed the major problems inherent to cellulose nanocomposites, namely, controlling the fiber structure and obtaining a sufficient interfacial adhesion between nanocellulose and a non-hydrophilic matrix. Unidirectionally aligned cellulose nanofiber filament mats were obtained via ice-templating, and chemical vapor deposition was used to cover the filament surfaces with an aminosilane before impregnating the mats with a bio-epoxy resin. The process resulted in cellulose nanocomposites with an oriented structure and a strong fiber–matrix interface. Diffuse reflectance infrared Fourier transform and X-ray photoelectron spectroscopy studies revealed the presence of silane on the filaments. The improved interface, resulting from the surface treatment, was observable in electron microscopy images and was further confirmed by the significant increase in the tan delta peak temperature. The storage modulus of the matrix could be improved up to 2.5-fold with 18 wt% filament content and was significantly higher in the filament direction. Wide-angle X-ray scattering was used to study the orientation of cellulose nanofibers in the filament mats and the composites, and the corresponding orientation indices were 0.6 and 0.53, respectively, indicating a significant level of alignment. Full article
Show Figures

Graphical abstract

Open AccessArticle
Antibacterial Multi-Layered Nanocellulose-Based Patches Loaded with Dexpanthenol for Wound Healing Applications
Nanomaterials 2020, 10(12), 2469; https://doi.org/10.3390/nano10122469 - 09 Dec 2020
Viewed by 653
Abstract
Antibacterial multi-layered patches composed of an oxidized bacterial cellulose (OBC) membrane loaded with dexpanthenol (DEX) and coated with several chitosan (CH) and alginate (ALG) layers were fabricated by spin-assisted layer-by-layer (LbL) assembly. Four patches with a distinct number of layers (5, 11, 17, [...] Read more.
Antibacterial multi-layered patches composed of an oxidized bacterial cellulose (OBC) membrane loaded with dexpanthenol (DEX) and coated with several chitosan (CH) and alginate (ALG) layers were fabricated by spin-assisted layer-by-layer (LbL) assembly. Four patches with a distinct number of layers (5, 11, 17, and 21) were prepared. These nanostructured multi-layered patches reveal a thermal stability up to 200 °C, high mechanical performance (Young’s modulus ≥ 4 GPa), and good moisture-uptake capacity (240–250%). Moreover, they inhibited the growth of the skin pathogen Staphylococcus aureus (3.2–log CFU mL−1 reduction) and were non-cytotoxic to human keratinocytes (HaCaT cells). The in vitro release profile of DEX was prolonged with the increasing number of layers, and the time-dependent data imply a diffusion/swelling-controlled drug release mechanism. In addition, the in vitro wound healing assay demonstrated a good cell migration capacity, headed to a complete gap closure after 24 h. These results certify the potential of these multi-layered polysaccharides-based patches toward their application in wound healing. Full article
Show Figures

Graphical abstract

Open AccessArticle
Flexible Nanocellulose/Lignosulfonates Ion-Conducting Separators for Polymer Electrolyte Fuel Cells
Nanomaterials 2020, 10(9), 1713; https://doi.org/10.3390/nano10091713 - 29 Aug 2020
Cited by 1 | Viewed by 960
Abstract
The utilization of biobased materials for the fabrication of naturally derived ion-exchange membranes is breezing a path to sustainable separators for polymer electrolyte fuel cells (PEFCs). In this investigation, bacterial nanocellulose (BNC, a bacterial polysaccharide) and lignosulfonates (LS, a by-product of the sulfite [...] Read more.
The utilization of biobased materials for the fabrication of naturally derived ion-exchange membranes is breezing a path to sustainable separators for polymer electrolyte fuel cells (PEFCs). In this investigation, bacterial nanocellulose (BNC, a bacterial polysaccharide) and lignosulfonates (LS, a by-product of the sulfite pulping process), were blended by diffusion of an aqueous solution of the lignin derivative and of the natural-based cross-linker tannic acid into the wet BNC nanofibrous three-dimensional structure, to produce fully biobased ion-exchange membranes. These freestanding separators exhibited good thermal-oxidative stability of up to about 200 °C, in both inert and oxidative atmospheres (N2 and O2, respectively), high mechanical properties with a maximum Young’s modulus of around 8.2 GPa, as well as good moisture-uptake capacity with a maximum value of ca. 78% after 48 h for the membrane with the higher LS content. Moreover, the combination of the conducting LS with the mechanically robust BNC conveyed ionic conductivity to the membranes, namely a maximum of 23 mS cm−1 at 94 °C and 98% relative humidity (RH) (in-plane configuration), that increased with increasing RH. Hence, these robust water-mediated ion conductors represent an environmentally friendly alternative to the conventional ion-exchange membranes for application in PEFCs. Full article
Show Figures

Graphical abstract

Back to TopTop