Special Issue "ZnO Based Nanostructures: Synthesis, Characterization and Applications"

A special issue of Nanomaterials (ISSN 2079-4991).

Deadline for manuscript submissions: 31 October 2020.

Special Issue Editor

Dr. Roman Viter
Website
Guest Editor
Institute of Atomic Physics and Spectroscopy, University of Latvia, Latvia
Interests: Metal oxide nanostructrures, metal oxide nanocomposites, optical sensors and biosensors, photocatalysis

Special Issue Information

Dear colleagues,

The ‘ZnO Based Nanostructures: Synthesis, Characterization and Applications’ is an important and actual subject, that includes a variety of a number specialized research interests from nanomaterials, physical chemistry and functional surfaces. This special issue intends to collect the recent achievements in experimental and theoretical studies on ZnO. Papers, focused on new methods of synthesis of ZnO and ZnO-based composite materials, forming of ZnO functional surfaces, applications of ZnO nanomaterials in sensors, biosensors, photocatalysis, electrochemical applications, biomedical applications and theoretical calculations of zinc oxide surface properties are welcome. Safety of ZnO nanostructures also can be a point of interest. The Special Issue is issued to the main natural science fields. The Special Issue will encourage interdisciplinary studies on intersection of physics, chemistry, microbiology and medicine.

Dr. Roman Viter
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ZnO and ZnO composites
  • new properties of ZnO-based materials
  • functional surfaces
  • applications of ZnO-based nanomaterials

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Synthesis and Memristor Effect of a Forming-Free ZnO Nanocrystalline Films
Nanomaterials 2020, 10(5), 1007; https://doi.org/10.3390/nano10051007 - 25 May 2020
Abstract
We experimentally investigated the effect of post-growth annealing on the morphological, structural, and electrophysical parameters of nanocrystalline ZnO films fabricated by pulsed laser deposition. The influence of post-growth annealing modes on the electroforming voltage and the resistive switching effect in ZnO nanocrystalline films [...] Read more.
We experimentally investigated the effect of post-growth annealing on the morphological, structural, and electrophysical parameters of nanocrystalline ZnO films fabricated by pulsed laser deposition. The influence of post-growth annealing modes on the electroforming voltage and the resistive switching effect in ZnO nanocrystalline films is investigated. We demonstrated that nanocrystalline zinc oxide films, fabricated at certain regimes, show the electroforming-free resistive switching. It was shown, that the forming-free nanocrystalline ZnO film demonstrated a resistive switching effect and switched at a voltage 1.9 ± 0.2 V from 62.42 ± 6.47 (RHRS) to 0.83 ± 0.06 kΩ (RLRS). The influence of ZnO surface morphology on the resistive switching effect is experimentally investigated. It was shown, that the ZnO nanocrystalline film exhibits a stable resistive switching effect, which is weakly dependent on its nanoscale structure. The influence of technological parameters on the resistive switching effect in a forming-free ZnO nanocrystalline film is investigated. The results can be used for fabrication of new-generation micro- and nanoelectronics elements, including random resistive memory (ReRAM) elements for neuromorphic structures based on forming-free ZnO nanocrystalline films. Full article
Show Figures

Figure 1

Open AccessArticle
Atomic Layer Deposition of ZnO on Mesoporous Silica: Insights into Growth Behavior of ZnO via In-Situ Thermogravimetric Analysis
Nanomaterials 2020, 10(5), 981; https://doi.org/10.3390/nano10050981 - 20 May 2020
Abstract
ZnO is a remarkable material with many applications in electronics and catalysis. Atomic layer deposition (ALD) of ZnO on flat substrates is an industrially applied and well-known process. Various studies describe the growth of ZnO layers on flat substrates. However, the growth characteristics [...] Read more.
ZnO is a remarkable material with many applications in electronics and catalysis. Atomic layer deposition (ALD) of ZnO on flat substrates is an industrially applied and well-known process. Various studies describe the growth of ZnO layers on flat substrates. However, the growth characteristics and reaction mechanisms of atomic layer deposition of ZnO on mesoporous powders have not been well studied. This study investigates the ZnO ALD process based on diethylzinc (DEZn) and water with silica powder as substrate. In-situ thermogravimetric analysis gives direct access to the growth rates and reaction mechanisms of this process. Ex-situ analytics, e.g., N2 sorption analysis, XRD, XRF, HRTEM, and STEM-EDX mapping, confirm deposition of homogenous and thin films of ZnO on SiO2. In summary, this study offers new insights into the fundamentals of an ALD process on high surface area powders. Full article
Show Figures

Graphical abstract

Open AccessArticle
Seedless Hydrothermal Growth of ZnO Nanorods as a Promising Route for Flexible Tactile Sensors
Nanomaterials 2020, 10(5), 977; https://doi.org/10.3390/nano10050977 - 19 May 2020
Abstract
Hydrothermal growth of ZnO nanorods has been widely used for the development of tactile sensors, with the aid of ZnO seed layers, favoring the growth of dense and vertically aligned nanorods. However, seed layers represent an additional fabrication step in the sensor design. [...] Read more.
Hydrothermal growth of ZnO nanorods has been widely used for the development of tactile sensors, with the aid of ZnO seed layers, favoring the growth of dense and vertically aligned nanorods. However, seed layers represent an additional fabrication step in the sensor design. In this study, a seedless hydrothermal growth of ZnO nanorods was carried out on Au-coated Si and polyimide substrates. The effects of both the Au morphology and the growth temperature on the characteristics of the nanorods were investigated, finding that smaller Au grains produced tilted rods, while larger grains provided vertical rods. Highly dense and high-aspect-ratio nanorods with hexagonal prismatic shape were obtained at 75 °C and 85 °C, while pyramid-like rods were grown when the temperature was set to 95 °C. Finite-element simulations demonstrated that prismatic rods produce higher voltage responses than the pyramid-shaped ones. A tactile sensor, with an active area of 1 cm2, was fabricated on flexible polyimide substrate and embedding the nanorods forest in a polydimethylsiloxane matrix as a separation layer between the bottom and the top Au electrodes. The prototype showed clear responses upon applied loads of 2–4 N and vibrations over frequencies in the range of 20–800 Hz. Full article
Show Figures

Graphical abstract

Open AccessArticle
Remarkable Stability Improvement of ZnO TFT with Al2O3 Gate Insulator by Yttrium Passivation with Spray Pyrolysis
Nanomaterials 2020, 10(5), 976; https://doi.org/10.3390/nano10050976 - 19 May 2020
Abstract
We report the impact of yttrium oxide (YOx) passivation on the zinc oxide (ZnO) thin film transistor (TFT) based on Al2O3 gate insulator (GI). The YOx and ZnO films are both deposited by spray pyrolysis at 400 [...] Read more.
We report the impact of yttrium oxide (YOx) passivation on the zinc oxide (ZnO) thin film transistor (TFT) based on Al2O3 gate insulator (GI). The YOx and ZnO films are both deposited by spray pyrolysis at 400 and 350 °C, respectively. The YOx passivated ZnO TFT exhibits high device performance of field effect mobility (μFE) of 35.36 cm2/Vs, threshold voltage (VTH) of 0.49 V and subthreshold swing (SS) of 128.4 mV/dec. The ZnO TFT also exhibits excellent device stabilities, such as negligible threshold voltage shift (∆VTH) of 0.15 V under positive bias temperature stress and zero hysteresis voltage (VH) of ~0 V. YOx protects the channel layer from moisture absorption. On the other hand, the unpassivated ZnO TFT with Al2O3 GI showed inferior bias stability with a high SS when compared to the passivated one. It is found by XPS that Y diffuses into the GI interface, which can reduce the interfacial defects and eliminate the hysteresis of the transfer curve. The improvement of the stability is mainly due to the diffusion of Y into ZnO as well as the ZnO/Al2O3 interface. Full article
Show Figures

Graphical abstract

Open AccessArticle
Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV Blocker and Antimicrobial Agent
Nanomaterials 2020, 10(3), 530; https://doi.org/10.3390/nano10030530 - 15 Mar 2020
Abstract
Zinc oxide (ZnO) nanoparticles have gained widespread interest due to their unique properties, making them suitable for a range of applications. Several methods for their production are available, and of these, controlled synthesis techniques are particularly favourable. Large-scale culturing of Chlorella vulgaris produces [...] Read more.
Zinc oxide (ZnO) nanoparticles have gained widespread interest due to their unique properties, making them suitable for a range of applications. Several methods for their production are available, and of these, controlled synthesis techniques are particularly favourable. Large-scale culturing of Chlorella vulgaris produces secretory carbohydrates as a waste product, which have been shown to play an important role in directing the particle size and morphology of nanoparticles. In this investigation, ZnO nanorods were produced through a controlled synthesis approach using secretory carbohydrates from C. vulgaris, which presents a cost-effective and sustainable alternative to the existing techniques. Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), and UV-Vis spectroscopy were used to characterise the nanorods. The prepared nanorods exhibited a broad range of UV absorption, which suggests that the particles are a promising broadband sun blocker and are likely to be effective for the fabrication of sunscreens with protection against both UVB (290–320 nm) and UVA (320–400 nm) radiations. The antimicrobial activity of the prepared nanorods against Gram-positive and Gram-negative bacteria was also assessed. The nanostructures had a crystalline structure and rod-like appearance, with an average length and width of 150 nm and 21 nm, respectively. The nanorods also demonstrated notable antibacterial activity, and 250 μg/mL was determined to be the most effective concentration. The antibacterial properties of the ZnO nanorods suggest its suitability for a range of antimicrobial uses, such as in the food industry and for various biomedical applications. Full article
Show Figures

Figure 1

Back to TopTop