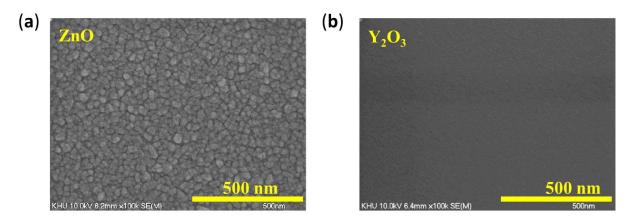
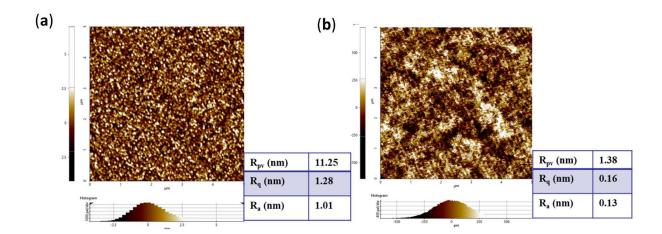
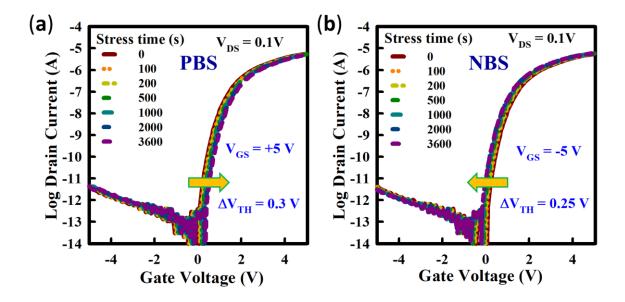

Supporting information

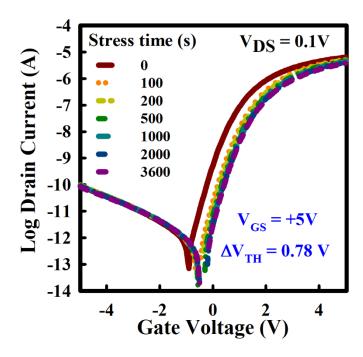
Article


Remarkable Stability Improvement of ZnO TFT with Al₂O₃ Gate Insulator by Yttrium Passivation with Spray Pyrolysis

Jewel Kumer Saha, 1,2 Ravindra Naik Bukke, 1 Narendra Naik Mude, 1 and Jin Jang 1*


- ¹ Advanced Display Research Center (ADRC), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea,
- ² Department of Physics, Jagannath University, Dhaka-1100, Bangladesh
- * E-mail: jjang@khu.ac.kr


Figure S1. XRD spectra of (a) ZnO film deposited at 350°C (b) Y₂O₃ film deposited at 400°C. The three peaks corresponded to the (002), (101), and (102) planes of hexagonal wurtzite structure where the most preferred orientation is (002) plane. The Y₂O₃ film shows no prominent XRD peak confirms the amorphous nature.


Figure S2. SEM image of (a) nano-crystalline ZnO film (b) amorphous Y_2O_3 film. The ZnO film shows compact grains with average grain size of ~30nm, which are beneficial to the transportation of electrons. The Y_2O_3 film shows no significant grains.

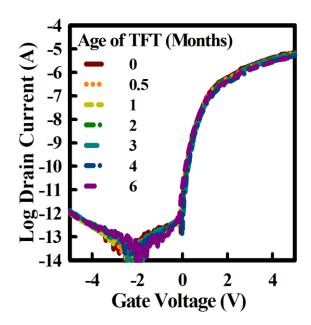

Figure S3. AFM image for surface roughness of spray coated (a) nano-crystalline ZnO film, and (b) amorphous Al_2O_3 film. Due to crystallinity, the root mean square roughness (R_{rms}) value of the ZnO film is 1.28 nm, whereas Al_2O_3 film with amorphous structure showing R_{rms} value of 0.16 nm.

Figure S4: The evolution of transfer curve under bias stress for ZnO TFT without Y_2O_3 passivation. Transfer curves of ZnO TFTs under (a) PBS, and (b) NBS, measured by sweeping V_{CS} from -5 to +5 V at the drain voltage, V_{DS} = 0.1 V from 0 to 1 h.

Figure S5. The evolution of transfer curve under positive bias temperature stress for ZnO TFT without Y_2O_3 passivation. The transfer curve of the TFT measured by sweeping V_{CS} from -5 to +5 V at the drain voltage, V_{DS} = 0.1 V for 1 h.The temperature stress was applied at T = 60°C.

Figure S6: The evolution of transfer curve of Y_2O_3 passivated ZnO TFT in ambient air for long term stability The transfer curve of the TFT measured by sweeping V_{CS} from -5 to +5 V at the drain voltage, $V_{DS} = 0.1$ V.