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Abstract: Porous ZnO sheets containing various degrees of a nanoscaled pore were successfully
synthesized using a simple hydrothermal method and various postannealing procedures. The porosity
features of the ZnO sheets can be easily tuned by changing both the annealing temperature and
annealing atmosphere. The dense porous nature of ZnO sheets is beneficial to enhance light
absorption. Moreover, the substantially increased oxygen vacancies in the ZnO sheets were observed
especially after the hydrogen treatment as revealed in the X-ray photoelectron spectroscope and
photoluminescence analyses. The high density of surface crystal defect enhanced the photoinduced
electron-hole separation rate of the ZnO sheets, which is crucial for an improved photoactivity.
The porous ZnO sheets formed at a hydrogen atmosphere exhibited superior photoactive performance
than the porous ZnO sheets formed at the high-temperature ambient air annealing. The dense pores
and massive crystal defects formed by a hydrogen atmosphere annealing in the ZnO crystals might
account for the observed photoactive behaviors in this study.
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1. Introduction

Two dimensional (2D) sheet- or plate-like metal oxides for scientific applications attract much
attention recently due to their unique physical and chemical properties [1–4]. The 2D sheet- or
plate-like oxide nanomaterials are beneficial in increasing the light interaction area in the oxides and are
promising in photoactive device applications. Porous oxide nanomaterials made of these 2D oxides are
reported to exhibit excellent photocatalytic and photoactivated properties [5–7]. The porous ZnO sheets
being ultrathin, mesoporous, and single-crystalline have been shown as advantageous in photocatalytic
degradation of methylene blue [5]. The excellent solar-driven photocatalytic hydrogen evolution
has been observed for the mesoporous black anatase TiO2 nanosheets synthesized via a biotemplate
method combined with an ethanediamine encircling process [6]. Chemical bath derived porous 2D
β-Bi2O3 nanoplates show excellent photoinduced current density and have potential in the application
of photoelectron catalysis [7]. For photocatalytic applications, both faces of 2D sheets and pores can be
in contact with the target pollutant solution, hence favoring the sufficient utilization of the catalytic
surface. The aforementioned examples demonstrate that the 2D oxide nanostructures fabricated with a
suitable pore number and size in them can further successfully enhance the photoactive performance
of these 2D oxide nanomaterials.

ZnO is an attractive wide band gap semiconductor oxide. It possesses a high chemical stability,
electrochemical coupling coefficient, and impressive photostability [8,9]. Development of 2D ZnO
nanostructures via various routes is therefore of potential interest for photoactive device applications.
Liang et al. have synthesized Al-doped ZnO nanosheets via electrodeposition [10]. A soft solution
chemical bath deposition method has been adopted to prepare 2D polar-surface-dominated ZnO
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nanosheets [11]. Moreover, the porous 2D ZnO structures have also been reported. For example,
a hierarchically assembled porous rectangular ZnO plate has been synthesized through the calcination
of a hydrozincite (Zn5(CO3)2(OH)6) intermediate [12]. The previous work fabricates the porous ZnO
nanosheets from a one-step polyol refluxing method [13]. However, the synthesis of porous 2D ZnO
structures via a one-step synthesis route or only by calcination of the hydrozincite intermediate is not
promising to modulate the pore size and density in the parent structure.

Hydrothermal crystal growth of ZnO has been widely developed recently to design the morphology
of ZnO crystals at a low cost and processes temperature. The development of 2D ZnO nanosheets
synthesis processes via a hydrothermal crystal growth triggers more attention because such a synthesis
route has flexible process parameters and is promising to modulate the corresponding shape dependent
properties of ZnO. However, further controlling the pore formation with varied size and distribution
density is still a challenge. Moreover, the previous works on porous ZnO sheets do not well demonstrate
the charge separation issues based on the systematical photoelectrochemical works [14–17]. Notably,
in addition to the pore size of the ZnO sheets on photocatalytic degradation towards organic dyes as
investigated by previous works, the reports on the effect of hydrogen annealing engendered crystal
defects in the porous ZnO sheets on photoactive performance are limited in number. The difference
from the above previous porous ZnO sheet-related works is that the current research focuses on
the photoactive performance of various porous ZnO sheets with a controllable pore size and crystal
defect density variations; moreover, the photoinduced charge separation capability of various ZnO
sheet-like samples are correlated with the rigorous photoelectrochemical works. The experimental
results herein provide an importance reference to design 2D porous ZnO nanostructures with desirable
photoactive performance and the proposed process development approach is promising to integrate
porous ZnO sheets in various photoactivated nanodevice applications. The structure-dependent
photoactive performances of various porous ZnO sheets are systematically investigated in this study to
understand the feasibility of applying this porous ZnO sheet to high-efficiency photo-activated devices.

2. Materials and Methods

For preparation of ZnO sheets, 2.23 g of zinc nitrate hexahydrate (Zn(NO3)2·6H2O), together
with 8.34 g of urea ((NH2)2CO), was dissolved in 100 mL of deionized water. The resulting solution
was stirred by using a magnetic stirrer for 1 h, and 20 mL of the precursor solution was transferred
into a Teflon-lined autoclave. The F-doped tin oxide (FTO) glass slides were used as substrates for
the deposition of ZnO sheets. All cleaned substrate were perpendicularly suspended in a solution,
and hydrothermal treatments were carried out at 90 ◦C for 4 h. The substrates were taken out of
autoclave at room temperature and washed with ethanol and deionized water for several times and
dried in air at 60 ◦C. The formation mechanism of ZnO sheets via the precursor solution adding urea
and conducted with the adequate thermal annealing procedure is shown below: Urea can be used as a
stabilizer during hydrothermal ZnO crystal growth. When urea is dissolved in an aqueous precursor
solution, it will slowly be displaced by water molecules to produce ammonia and carbonate anion
(CO3

2−). During the hydrothermal process, urea decomposed and produced NH3. NH4
+ ions will

generate from NH3 ions and markedly increase pH aqueous solution and support the hydrothermal
ZnO crystal growth process ((1) and (2) reactions) [18]:

CON2H4 + 3H2O→ CO2 (g) + 2NH3H2O (1)

2NH3 · H2O + CO2→ 2NH4
+ + CO3

2− + OH− (2)

For the ZnO precursor aqueous, zinc nitrate hexahydrate will provide Zn2+ ions when dissolved
in water as in

Zn(NO3)2 · 6H2O + H2O→ Zn2+ + 2NO3
− + 7H2O (3)

4Zn2+ + CO3
2− + 6OH− + H2O→ Zn4CO3(OH)6 · H2O(s) (4)
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Zn4CO3(OH)6 · H2O→ 4ZnO (s) + 4H2O + CO2 (g) (5)

Zn4CO3(OH)6·ZnO sheet-like crystals are formed during the hydrothermal reactions in an aqueous
precursor solution [19], and they are further decomposed to crystalline ZnO sheet-like crystals after
annealing at 300 ◦C in ambient air. Some of the crystalline ZnO sheets are respectively further conducted
in thermal annealing procedures at 500 ◦C in ambient air and at 450 ◦C in hydrogen atmosphere
to form a porous sheet structure. The notations for the as-synthesized porous ZnO sheets formed
at high-temperature ambient air and hydrogen atmosphere annealings are respectively ZnO-A and
ZnO-H in this study.

The sample crystal structure was evaluated by X-ray diffraction (XRD; Bruker D2 PHASER) analysis
using Cu Kα radiation. The sample morphology and detailed microstructures were characterized
by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with a Hitachi
S-4800 (Tokyo, Japan) and a Philips Tecnai F20 G2 (Amsterdam, the Netherlands), respectively.
The optical properties were investigated by recording the (UV–vis) diffuse reflectance spectra at
room temperature using a Jasco V750 spectrophotometer in the ultraviolet to visible light wavelength
range. X-ray photoelectron spectroscopy (XPS) was carried out with an ULVAC-PHI PHI 5000
VersaProbe spectrometer (Chigasaki, Japan) using Mg Kα radiation for sample elemental analysis.
Photoluminescence (PL) spectra were measured on a luminescence spectrophotometer (HORIBA HR800,
Kyoto, Japan) with an excitation wavelength of 325 nm at room temperature. The photoelectrochemical
experiments were performed using a three-electrode electrochemical working station, where the
as-synthesized sheet-like sample was used as the working electrode, the Pt wire was used as the
counter electrode. An Ag/AgCl reference electrode in an aqueous solution containing 0.5 M Na2SO4

was employed during the measurements. The Nyquist plots of various samples were measured at the
open circuit potential with the frequency from 1 Hz to 100 kHz using an electrochemical impedance
spectroscopy (EIS, SP150, Seyssinet-Pariset, France). Photodegradation tests of various sheet-like
samples (approximately 10 mg sheets are used for test) were performed by comparing the degradation
of 10−5 M aqueous solution of rhodamine B (RhB) under full-spectrum irradiation excited from the
100 W Xe arc lamp at various irradiation durations.

3. Results and Discussion

Figure 1a,b shows the typical morphology of as-synthesized ZnO sheets. The ZnO sheets
have an uneven surface feature. This might be associated with the crystalline ZnO sheet
comes from the 300 ◦C postannealed as-grown hydrothermally derived two-dimensional sheet-like
Zn4CO3 (OH)6·H2O. Such a thermal annealing procedure might engender the surface contractile
change of the Zn4CO3 (OH)6·H2O, and therefore a rugged surface feature was formed on the crystalline
ZnO sheets. The ZnO sheets showed a sheet layer thickness of less than 20 nm, and a few microns in
length and width. No aggregation was observed on the ZnO sheet-like sample; all the ZnO sheets
were freestanding and exhibited a good dispersibility over the area of the interest. After the high
temperature annealing procedure (500 ◦C) in ambient air and the hydrogen atmosphere (450 ◦C),
the ZnO-A (Figure 1c,d) and ZnO-H (Figure 1e,f) sheets show the nanometer-sized porous architectures
were formed in the sheets. The ZnO sheet-like products well maintained the morphology without
significant collapse after the annealing procedures, but with slightly decreased thickness. Notably,
the ZnO sheets conducted with a hydrogen annealing procedure at a temperature above 500 ◦C induced
seriously sheet appearance curling and reunion in this work (Figure 1g,h), showing a more intense
morphology transformation of the solid ZnO sheet structure to porous ZnO sheet structure at a higher
hydrogen annealing temperature. Therefore, the 450 ◦C hydrogen annealing temperature is the optimal
temperature to obtain the ZnO sheets with a desirable porous structure. Compared with the sheet
morphology of the ZnO-A in Figure 1c,d, the ZnO-H sheets in Figure 1e,f exhibited smaller and denser
pores in the sheets. Considering their high porosity, these as-synthesized porous ZnO sheet structures
are highly favorable to be applied in light absorption and a high surface area.
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Figure 1. Top-view SEM images of various ZnO sheets at different magnifications: (a,b) ZnO.
(c,d) ZnO-A. (e,f) ZnO-H. (g,h) The ZnO sheets conducted with a hydrogen annealing procedure at a
temperature above 500 ◦C.

Figure 2a–c shows the XRD patterns of the ZnO, ZnO-A, and ZnO-H sheets. The XRD patterns
display several distinct and sharp Bragg reflections of hexagonal wurtzite ZnO (100), (002), (101),
(102), and (110) (JCPDS no. 00-036-1451). The (100) and (101) preferred orientation dominated the
crystallographic feature of ZnO sheets herein. No characteristic peaks for any other impurity phase
were observed. A similar non-polar plane dominated crystallographic feature has also been reported in
the electrochemical derived ZnO nanosheets [10]. Notably, the angle position of the Bragg reflections
for the ZnO-H sample is slightly shifted to a lower angle position. For examples, the Bragg reflection
of (100) of the ZnO, ZnO-A, and ZnO-H sheets appeared at approximately 31.78, 31.80, and 31.42◦,
respectively. The calculated interplanar distance values for ZnO, ZnO-A, and ZnO-H are 0.281, 0.281,
and 0.285 nm, respectively. The interplanar distance of the (101) for the ZnO, ZnO-A, and ZnO-H sheets
is respectively 0.248, 0.247, and 0.250 nm. The slightly larger lattice volume was observed in the ZnO
sheets conducted with the hydrogen atmosphere annealing procedure. The shift of Bragg reflections of
ZnO nanowires prepared by the carbothermal reduction process towards a lower angle has also been
shown after the hydrogen atmosphere annealing procedure [20]. This could be caused by the reasons
that hydrogen is incorporated into the ZnO lattice as an interstitial, and possibly introducing oxygen
defects will result in expansion of the lattice [20,21].
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Figure 2. XRD patterns of various ZnO sheets: (a) ZnO. (b) ZnO-A. (c) ZnO-H. The asterisk denoted
the Bragg reflections from the F-doped tin oxide (FTO).

Figure 3a exhibits the typical TEM image of a ZnO-A sheet, from which it can be clearly seen that
the individual sheet had the width of approximately 2 um. The sheet was full of irregular pores of tens
of nanometers and these pores are randomly distributed in the sheets. The corresponding histogram of
the calculated porous size distribution of the ZnO-A sheet is shown in Figure 3b and the average pore
size of the ZnO-A sheet is approximately 48 nm in this study. The high-resolution (HR) TEM images
taken from the local regions in Figure 3a are displayed in Figure 3c,d. The orderly and clear lattice
fringes, parallel to each other, show that the ZnO sheet are well-crystallized, and the resolved spacing
between two neighboring parallel fringes is approximately 0.247 nm, which is in good agreement with
the aforementioned XRD pattern with the (101) plane of hexagonal wurtzite ZnO. The diffraction spots
in the corresponding selected area electron diffraction (SAED) pattern (Figure 3e) were identified as
the (002), (102), (110), and (112) reflections of hexagonally structured ZnO, indicating that the ZnO
sheet was in a good crystallinity. Energy dispersive X-ray spectroscopy (EDS) shows that the ZnO-A
sheet (Figure 3f) is elementally composed of zinc and oxygen. The O/Zn atomic ratio was evaluated to
be 0.97. The ZnO-A sheet with a highly elemental purity was formed herein.
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Figure 3. TEM analysis of the ZnO-A sheet: (a) low-magnification image. (b) Histogram of pore size.
(c,d) HRTEM images. (e) SAED pattern. (f) EDS spectrum.
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Figure 4a exhibits a low-magnification TEM image of the ZnO-H sheet, from which it can be clearly
seen that the individual sheet was full of nanosized pores with the diameter of a few tens of nanometers.
The pore size distribution was more homogeneous and pore density was higher herein in comparison
with those of the ZnO-A sheet as exhibited in Figure 3a. The corresponding histogram of the calculated
pore size distribution of the ZnO-H sheet is shown in Figure 4b. The average pore size of the ZnO-H
was approximately 21 nm, which was significantly smaller than that of the ZnO-A sample. The pore
size analysis herein was consistent with the SEM observations. The HRTEM images taken from various
regions of the ZnO-H are displayed in Figure 4c,d. In the HR images, the lattice fringes showed the
imaging characteristics of the hexagonal wurtzite ZnO crystal (JCPDS no. 00-036-1451), in which the
interplanar spacing of 0.250 nm corresponded to the distance of the ZnO (101) crystallographic plane.
Notably, the HRTEM images here exhibited a relatively poor crystalline quality than did the ZnO-A,
which was due to the introduction of more oxygen defects into the ZnO lattices and engendered
lattice expansion and reduced crystallinity, consistent with the earlier XRD peak shift result obtained.
The SAED pattern of this sheet is displayed in Figure 4e. The pattern exhibited (002), (101), (102), (110),
and (112) reflection rings of wurtzite-type ZnO, and this indicates that the sheet was polycrystalline.
Figure 4f is an EDS spectrum taken from this ZnO-H sheet, which revealed the presence of Zn and
O in the sheet structure. The evaluated O/Zn atomic ratio was approximately 0.92 herein. A slightly
higher degree of oxygen deficiency of the ZnO-H sheet was observed. The above results confirmed
that the porous ZnO sheet with a homogeneous pore distribution was successfully grown on the
FTO substrate via the hydrothermal method combined with the subsequent annealing process in a
hydrogen atmosphere.
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The formation of as-synthesized ZnO sheets were obtained after postannealing Zn4CO3(OH)6·H2O
crystals at 300 ◦C. The XPS survey scan spectrum (Figure S1) of as-synthesized ZnO sheets also
demonstrated no nitrogen existed in the sample, revealing the well phase transformation of
Zn4CO3(OH)6·H2O to ZnO after the postannealing procedure. Figure 5a–c displays Zn2p3/2 spectra of
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various ZnO sheets. The binding energies of Zn2p3/2 for various ZnO sheets are around 1021.7 eV,
revealing that Zn2+ ions existed in the ZnO lattice [22–24]. Figure 5d–f show the O1s XPS spectra of
various ZnO sheets. For all ZnO sheets, the O1s peaks centered around 530.6 eV, and the peak profiles
were asymmetric, a visible shoulder peak appeared at a higher binding energy. The O1s core-level
spectra herein suggested the possible presence of at least two different kinds of oxygen binding states
in these ZnO sheets. The deconvolution of the O1s spectra demonstrated that the subpeak centered at
529.7 eV could be indexed to the lattice oxygen of ZnO, and the subpeak at the higher binding energy
of 530.6 eV was attributed to a contribution of oxygen ions that were in oxygen-deficient regions within
the ZnO lattice and chemisorbed species on the sample surface [24]. Surface oxygen vacancies can
induce localized states close to the conduction band of ZnO and act as a donor, which might affect the
electronic properties of the oxides. The XPS O1s analysis results revealed that the oxygen vacancy
density of the ZnO-H sheets was higher compared to ZnO and ZnO-A sheets.
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Figure 6a shows the PL spectra of the ZnO, ZnO-A, and ZnO-H sheets, which provided information
about the crystal defects presented in the ZnO crystal. The ZnO sheets had a narrow and sharp
emission peak at the UV region. The UV emission peak is the intrinsic bandgap absorption of ZnO,
which comes from the recombination of free excitons [25]. Compared with ZnO-A and ZnO-H sheets,
the ZnO sheets had a substantially intense UV emission band. It shows that the pristine ZnO sheets
had a higher electron-hole recombination rate. The substantially quenched UV emission band intensity
for the ZnO-A and ZnO-H, demonstrated superior charge separation ability in these porous sheets.
Notably, the UV emission band of the ZnO and ZnO-A sheets was located at approximately 382 nm,
and the UV emission band was red-shifted to a higher wavelength of 387 nm for the ZnO-A sheets.
The ZnO sheets annealed in a hydrogen atmosphere might incur a high density of crystal defect
in the ZnO lattice, and lead to lattice expansion. This has been associated with the slight red shift
in the near band edge emission of the ZnO crystal in the PL analysis [26]. Furthermore, a distinct
visible light emission band appeared in the ZnO, ZnO-A, and ZnO-H sheets. These broad emission
bands are associated with the charged oxygen vacancy, which originated from the surface electron
traps associated with ionized oxygen vacancies from the defect donor level to the valence band [27].
Comparatively, the visible light emission band intensity of the ZnO-H sheets was well above that of the
ZnO and ZnO-A sheets. Hence, the PL emission spectra results showed that the ZnO sheets annealed
in a hydrogen atmosphere owned more surface oxygen vacancies. Moreover, the substantial removal
of surface absorbed OH group at suitable annealing conditions has been shown in an obviously blue
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shift in the visible region peak of the ZnO crystals [28]; this might account for the observed blue
shift in the visible region peak of the ZnO-H sheets in comparison with that of the ZnO and ZnO-A
sheets herein. Figure 6b shows the UV–vis diffuse reflectance spectra for the ZnO, ZnO-A, and ZnO-H
sheets. The diffuse reflectance measurements were converted into the equivalent absorption coefficient
using the Kubelka–Munk (K–M) method: F(R) = (1 − R)2/2R = α, in which R is the reflectance and
α is the absorption coefficient [29]. The light absorption edges of various ZnO sheets were located
at approximately 370–390 nm. The absorbance spectra showed that the ZnO-H sheets exhibited a
red-shift, which occurred in the absorption edge and presented a significantly enhanced absorption in
the UV and visible-light region. The increase of visible light absorption for the ZnO-H sheets can be
attributed to the introduction of crystal defects in the band-gap energy levels of ZnO during annealing
in a hydrogen atmosphere [30]. However, in comparison with the pristine ZnO sheets, the ZnO-A
sheets only showed a slightly enhanced optical absorption ability. The suitable amount of pores
between and within the ZnO sheets is posited to be advantageous for enhanced light absorption due to
the multi-reflection of trapped incident light within the nanostructures [31]. In this way, the optical
path length for light transport through the ZnO-H sheets because of its high pore density and small
pore size is longer, resulting in a greater absorption capacity herein. Such an enhanced absorption
capacity is beneficial for photoactive applications. Figure 6c depicts the direct bandgap energies of
various ZnO sheets estimated from a plot of (F(R)hν)2 vs. photo energy (hν) according to the K–M
model in which h is Planck’s constant, and ν is the frequency of light. [29]. The estimated bandgap
energies are respectively 3.25, 3.24, and 3.20 eV for the ZnO, ZnO-A, and ZnO-H sheets. The Urbach
energy was further used to evaluate the defect density size of various ZnO sheets. We have plotted
ln(F(R)) against the photon energy (Figure S2) according to the proposed equation [32]. The reciprocal
of the slope of the linear fit, below the optical band gap region, gives the value of Urbach energy of the
ZnO, ZnO-A, and ZnO-H sheets and that value was approximately 71, 76, and 110 meV, respectively.
It can be seen that the Urbach energy of the ZnO sheets markedly increased after annealing at a
hydrogen atmosphere, which might be attributed to an increased number of oxygen defect center in
the system [33].
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Figure 7a shows the photoresponse performances of the ZnO, ZnO-A, and ZnO-H sheets under
0.5 V (vs. Ag/AgCl potential). A fast photocurrent response was observed for each switch on/off

event in various sheet photoelectrodes. However, when the light was turned on, the ZnO and ZnO-A
photoanodes all showed a distinct spike-like transient response. The possible cause of this spike
transient feature was associated with the whole process of the back-reaction, which is regarded as
the recombination of the photoinduced electrons and holes at the surface states of the oxides [34].
In addition, the larger initial anode spike of the ZnO sheets were substantially decreased after a
hydrogen treatment, indicating that the electron-hole recombination was more effectively suppressed
on the ZnO-H sheets. Moreover, the steady-state photocurrent density of the ZnO sheets was enhanced
with a porous structure and a hydrogen treatment. The average photocurrent intensities of the ZnO,
ZnO-A, and ZnO-H sheets were approximately 0.49, 0.84, and 1.23 mA/cm2 under illumination.
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The ZnO-H showed the highest photocurrent density at the test cycles. The results herein revealed that
the dense porous nature of ZnO sheets is beneficial to enhance light absorption, and the increased
crystal defects after the hydrogen treatment increase the photoinduced electron-hole separation time,
which is crucial for improved photoactivity. This was supported by the earlier UV–vis and PL analyses.
The improvement of the photocurrent of the annealed ZnO sample verified that the charge separation
efficiency improved greatly through the ambient air and hydrogen annealing treatments. However,
the photocurrent density of the ZnO-H sheets declined from 1.23 to 1.02 mA/cm2 after six cycles.
This can be attributed to the excessively small porous on the surface of the ZnO nanosheet after the
hydrogen treatment, which could not withstand photocorrosion during the photoelectrochemical
(PEC) experiments. This may cause such a decline in durability of the photoactivity [35]. Figure 7b
shows the Mott–Schottky (M–S) plots of the ZnO, ZnO-A, and ZnO-H sheets, which were generated
based on capacitances that were derived from the EIS obtained at each potential with 1 kHz frequency
in the dark. As expected for n-type nature, all the ZnO sheets exhibited positive slopes in the M–S
plots. The carrier density of the oxide semiconductor was inversely proportional to the slope of
the straight-line portion in the M–S plot according to the proposed relationship of 1/C2 versus the
applied potential in the literature [36]. The slope of the straight-line portion in the M–S plot for the
ZnO-H sheets was the lowest among various sheet-like samples, revealing an increased carrier density.
This could be associated with the formation of surface oxygen vacancies of hydrogen-annealed ZnO
sheets. Hydrogen treatment at an elevated temperature will bring about desorption of partial oxygen
on the ZnO surface and made the ZnO surface positively charged. This might cause new doping
energy levels formed under the ZnO conduction band [37]. The annealing-induced formation of
doping energy levels with a small difference in energy level with respect to the ZnO conduction band
is feasible for the electrons in the doping energy levels to easily transfer to the ZnO conduction band
and thus enhances the carrier density of ZnO [38]. Based on the aforementioned, the ZnO-H sheets
showed a relatively smaller slope compared to the ZnO and ZnO-A sheets as expected in this work.
The higher carrier density in the oxide semiconductors reduced their bulk resistance and was beneficial
for improving their photoactive performance. A similar M–S curve slope variation feature between
the porous ZnO and pristine ZnO structures has been reported in the chemical solution derived ZnO
crystals [39]. The comparison of interface charge separation efficiency for various ZnO sheets was
further investigated by the Nyquist plots with and without irradiation in Figure 7c. The radius of the
arc on the Nyquist plots reflects the interface layer resistance occurring at the surface of electrode.
The smaller arc radius implies higher efficiency of the charge transfer ability [40,41]. The results in
Figure 7c showed that the decreasing order of the semicircular radius of the ZnO sheets with formation
of a porous structure by conducting thermal annealing procedures. Figure 7d shows the possible
equivalent circuit for evaluating the charge-transfer resistance (Rct) of the various ZnO sheet-based
electrodes. In Figure 7d, Re is the series resistance, Clb is the equivalent electrical circuit component,
and Zw is the Warburg impedance [42]. According to the fitting results, the Rct values of the ZnO,
ZnO-A, and ZnO-H sheets in the dark were respectively 12,902, 12,021, and 10,131 ohm, while the Rct

values of the ZnO, ZnO-A, and ZnO-H under irradiation were approximately 1877, 1087, and 914 ohm,
respectively. It illustrated that the porous structure is an aid to the improvement of charge transfer
efficiency and the electron transfer rate on the ZnO sheet-based electrode. Overall, the EIS results
behaved that the ZnO-H sheets exhibited superior charge separation and transportation efficiencies, in
turn reduced the interfacial resistance.
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Figure 8a–c shows the irradiation duration dependent characteristic absorbance spectra intensity
variation of aqueous RhB solution using various ZnO sheets as photocatalysts. The intensity of the
absorbance spectra decreased with irradiation duration, suggesting that the RhB dyes were gradually
photodegraded by various ZnO sheets. Comparatively, the drop degree of the absorbance spectra
intensity is more intense for the RhB solution with the ZnO-H sheets at the given irradiation condition.
For comparison, the photodegradation abilities of various ZnO sheets are displayed in Figure 8d.
The C/Co = It/Io was used to evaluate the photodegradation degree, in which Co and C are the initial
and residual concentration of the RhB dye at t = 0 and at any irradiation duration t, respectively and It

and Io are respectively the characteristic absorbance spectra intensities at irradiation duration t and
at t = 0 [40,43]. Both porous ZnO sheets, i.e., ZnO-A and ZnO-H photocatalysts exhibited higher
photocatalytic activities than pristine ZnO sheets. Nearly complete photodegradation (approximately
86%) of the RhB dyes was achieved for the RhB solution containing ZnO-H after 60 min irradiation;
ZnO-A photodegraded 76% RhB dyes under the same irradiation duration. By contrast, the pristine
ZnO sheet exhibited a relatively low photodegradation performance and only degraded 61% RhB dyes
after 60 min irradiation. Notably, the dark adsorption balance tests of various ZnO sheets were also
conducted to understand the dye adsorption capability of various ZnO sheets. The C/Co decreased
4% for the pristine ZnO sheets under the 30 min dark balance condition; the C/Co decreased to 7%
and 9% under the 30 min dark balance condition. The results herein demonstrated that the ZnO-H
sheets displayed a higher degree of dye adsorption. The hydrogen annealing ZnO sheets visibly
exhibited superior photodegradation degree towards the RhB solution among various ZnO sheet
photocatalysts after deducting the contribution of dye adsorption on the sample surface. The kinetic
linear simulation curves of the photocatalytic RhB degradation for different sheet-like photocatalysts
are exhibited in Figure 8e; an apparent first-order kinetic model for photodegradation reactions at
low initial concentrations was observed. The kinetic model follows the formula −ln(C/Co) = kt,
where k is the first-order rate constant (min−1) and t is irradiation duration [38]. Figure 8e shows
the −ln(C/Co) versus irradiation time curves of various sheet-like photocatalysts on photodegrading
RhB dyes. The k was found to be 0.0148 min−1, 0.0225 min−1, and 0.0315 min−1 for the ZnO, ZnO-A,
and ZnO-H photocatalysts, respectively. The photodegradation performance of various sheet-like
photocatalysts follows the order: ZnO-H > ZnO-A > ZnO. Obviously, the tiny pores in ZnO sheets
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impact their photocatalytic performance, which may be due to the increased light absorption and
larger surface area for dye adsorption. It has been shown that the porous structure was beneficial
to provide more photocatalytic reaction centers for the absorption of reactant organic molecules.
A similar porous structure effect has been demonstrated in mesoporous TiO2 materials, in which an
increased number of active sites in a mesoporous structure effectively increases their photocatalytic
activity [44]. Furthermore, a porous structure is also effective for light adsorption and thus generates
more photoinduced electrons and holes [45]. The as-prepared ZnO-H sheets can work as effective
photocatalysts herein. The corresponding photocatalytic reaction process can be formulated as
following [46]:

ZnO + hv→ e− + h+ (6)

e− + O2→ ·O2
− (7)

h+ + OH−→ ·OH (8)

·O2
−, h+, ·OH + RhB→ oxidation products (9)
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Figure 8. Absorption spectra intensity variation of the RhB dye solution as a function of irradiation time
with various ZnO sheets as photocatalysts: (a) ZnO. (b) ZnO-A. (c) ZnO-H. (d) C/Co vs. irradiation
time plot. (e) The reaction rate constants of various ZnO sheets. (f) Scavenger tests of RhB solution
containing ZnO-H photocatalyst. (g) The cyclic photodegradation of RhB solution with the ZnO-A.
(h) The cyclic photodegradation of RhB solution with the ZnO-H.

When ZnO sheets are irradiated by light with energy higher or equal to the band gap, an electron
(e−) in the valence band (VB) can be excited to the conduction band (CB) with the simultaneous
generation of a hole (h+) in the VB. Excited state e− and h+ can recombine and get trapped in metastable
surface states, or react with electron donors and electron acceptors adsorbed on the semiconductor
surface. The photoelectron is easily trapped by electron acceptors like adsorbed O2 to form ·O2

− radical,
whereas the photoinduced hole can be easily trapped by an electronic donor, such as OH− or organic
pollutants, to further oxidize organic dyes [47]. Notably, the photoactive ability of the ZnO sheets does
not only depend on the surface adsorption ability, but also relates to the concentration of oxygen defects
on the surfaces. Oxygen vacancies on ZnO sheet surface can serve as the electron capturing center to
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restrain the recombination of e− and h+ [48]. An increased oxygen vacancy number of the ZnO sheets
annealed in a hydrogen atmosphere effectively increased their photocatalytic efficiency. The active
species were also investigated to discuss the possible photocatalytic mechanism. The h+, ·O2

−, and ·OH
are the probable active species taking part in RhB dyes photodegradation. In this study, the edentate
disodium (EDTA-2Na), benzoquinone (BQ), and tert-Butyl alcohol (t-BuOH) were used as the traps for
h+, ·O2

−, and ·OH in the photodegradation reaction, respectively. The photocatalytic activity of ZnO-H
decreased slightly by the addition of EDTA-2Na and decreased largely with the addition of BQ or
t-BuOH, indicating that the ·O2

− and ·OH are the main active species in the RhB dye photodegradation
process (Figure 8f). The photostability of the porous ZnO sheets (ZnO-A and ZnO-H) was further
investigated by cyclic photodegradation experiments in Figure 8g,h. The photodegradation rates of the
ZnO-A and ZnO-H decreased respectively by approximately 2% and 5% after five consecutive cycles.
The ZnO-A photocatalyst maintained excellent photoactive performance after cyclic photodegradation
tests; however, the ZnO-H photocatalyst demonstrated fair photoactive performance after cyclic
photodegradation tests, indicating that the retention of photodurability of the ZnO-H sheets still
remains a challenge. The summarized comparative photodegradation performances of RhB solution
containing various ZnO or porous ZnO sheets from literatures are shown in Table S1 [5,49–51].
Nevertheless, the porous ZnO-H sheets herein demonstrated desirable photocatalytic degradation
capability towards the RhB solution.

4. Conclusions

In summary, porous ZnO sheets were successfully synthesized using a methodology consisting
of a simple hydrothermal method and post-annealing procedures. The porosity features of the
ZnO sheets can be easily tuned by changing the annealing temperature and annealing atmosphere.
The experimental results demonstrated that, compared with the pristine ZnO sheet, the porous ZnO
sheets demonstrated enhanced optical absorption ability. The suitable amount of pores between
and within the ZnO sheets is posited to be advantageous for enhanced light absorption due to
multi-reflection of trapped incident light within the porous nanostructures. Moreover, the porous
structure in the ZnO sheets impacted their photocatalytic performance, which may be due to the
increased light absorption, larger surface area for dye adsorption, and increased photoexcited charge
separation efficiency. The experimental results herein demonstrate the strategy of thermal annealing
induced porosity in the ZnO sheet-like structure is promising to design the 2D ZnO crystals with
various degrees of photoactive performance for photoactivated device applications.
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