Special Issue "Multiscale Innovative Materials and Structures"

A special issue of Nanomaterials (ISSN 2079-4991).

Deadline for manuscript submissions: 25 December 2020.

Special Issue Editors

Prof. Dr. Raffaele Barretta
Website
Guest Editor
Department of Structures for Engineering and Architecture, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
Interests: solid and structural mechanics; advanced materials; nonlocal constitutive models; functionally graded materials; generalized continua; nanostructures and nanocomposites; MEMS and NEMS
Special Issues and Collections in MDPI journals
Prof. Domenico De Tommasi
Website
Guest Editor
Politecnico di Bari, Bari, Italy
Interests: Finite elasticity; Linear and nonlinear kinematics; Membrane tensile structures; Fibre reinforced composite material mechanics; Masonry structure mechanics; Multilayer solids; Elastic bodies with non-convex energies; Biological material and metamaterials; Electroactive Polymers (EAP) devices
Prof. Fernando Fraternali
Website
Guest Editor
University of Salerno, Salerno, Italy
Interests: Multiscale modeling and simulation of solids and structures; Nonlinear dynamics of materials and structures; Design and engineering of sustainable materials at multiple scales
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Nanomaterials are currently essential constituents of ground-breaking nano-electromechanical systems (NEMS). There is increasing attention in multiscale metamaterials and a rising demand for exploring the potential of such novel systems in real-life engineering applications, including: smart buildings, antiseismic engineering, and structural health monitoring. Investigation of the size-dependent response of advanced materials and structures has gained intensive interest in literature due to the vast application of NEMS in a broad spectrum of modern nanoengineering systems. Local approaches of continuum mechanics are not able to effectively describe the size-dependent behavior of nanomedia, and thus, development of suitable analytical and numerical models is of major significance in design and optimization of materials and devices in the small-scale range.

This Special Issue on Multiscale Innovative Materials and Structures is aimed at extending the fundamental understanding of the mechanics of multiscale materials, ranging from multifunctional lattices to nanocomposites, and its application to the design of unconventional materials and structures. This Special Issue intends to publish original research papers and review articles addressing innovative theoretical approaches and novel numerical proposals aimed at amending the current state of the art on size-dependent modeling of nanomaterials and -structures. Authors are invited to submit both theoretical and experimental contributions.

Potential topics include but are not limited to the following:

  • Nanosized and nanostructured materials;
  • Periodic lattices and multiscale composites;
  • Preparation, characterization, and application of nanomaterials;
  • Nanocomposites, nanosystems, and nanodevices;
  • Nonlinear lattices, hierarchical lattices;
  • Nonlocal and generalized continua;
  • Experimental and computational techniques in nanoscience;
  • Design of ultralight structures and seismic devices for smart buildings.

Prof. Raffaele Barretta
Prof. Domenico De Tommasi
Prof. Fernando Fraternali
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • metamaterials
  • tensegrity structures
  • multifunctional lattices
  • nanocomposites
  • carbon nanotubes
  • size effects
  • nanobeams
  • nanoplates
  • nanoshells
  • nano-actuators
  • nanosensors
  • nanoengineering
  • NEMS

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Design and Testing of Bistable Lattices with Tensegrity Architecture and Nanoscale Features Fabricated by Multiphoton Lithography
Nanomaterials 2020, 10(4), 652; https://doi.org/10.3390/nano10040652 - 31 Mar 2020
Abstract
A bistable response is an innate feature of tensegrity metamaterials, which is a conundrum to attain in other metamaterials, since it ushers unconventional static and dynamical mechanical behaviors. This paper investigates the design, modeling, fabrication and testing of bistable lattices with tensegrity architecture [...] Read more.
A bistable response is an innate feature of tensegrity metamaterials, which is a conundrum to attain in other metamaterials, since it ushers unconventional static and dynamical mechanical behaviors. This paper investigates the design, modeling, fabrication and testing of bistable lattices with tensegrity architecture and nanoscale features. First, a method to design bistable lattices tessellating tensegrity units is formulated. The additive manufacturing of these structures is performed through multiphoton lithography, which enables the fabrication of microscale structures with nanoscale features and extremely high resolution. Different modular lattices, comprised of struts with 250 nm minimum radius, are tested under loading-unloading uniaxial compression nanoindentation tests. The compression tests confirmed the activation of the designed bistable twisting mechanism in the examined lattices, combined with a moderate viscoelastic response. The force-displacement plots of the 3D assemblies of bistable tensegrity prisms reveal a softening behavior during the loading from the primary stable configuration and a subsequent snapping event that drives the structure into a secondary stable configuration. The twisting mechanism that characterizes such a transition is preserved after unloading and during repeated loading-unloading cycles. The results of the present study elucidate that fabrication of multistable tensegrity lattices is highly feasible via multiphoton lithography and promulgates the fabrication of multi-cell tensegrity metamaterials with unprecedented static and dynamic responses. Full article
(This article belongs to the Special Issue Multiscale Innovative Materials and Structures)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Design and testing of bistable lattices with nanoscale features fabricated by multiphoton lithography
Authors: Zacharias Vangelatos 1, Andrea Micheletti 2, Costas Grigoropoulos 1,*, and Fernando Fraternali 3
Affiliation: 1 Department of Mechanical Engineering, University of California, Berkeley, CA, USA; [email protected], [email protected] 2 Department of Civil and Computer Science Engineering, University of Rome Tor Vergata, Italy; [email protected] 3 Department of Civil Engineering, University of Salerno, Italy; [email protected] * Correspondence: [email protected]; Tel.: +1-510-642-2525
Abstract: Bistable response is a peculiar feature of tensegrity metamaterials, which is not easily found in other lattice metamaterials. It reflects into unconventional mechanical behaviors both in statics and dynamics. This paper explores the design, modeling, fabrication and testing of bistable lattices with tensegrity architecture and nanoscale features. First, a method to design bistable lattices starting from mono-stable tensegrity structures is formulated. Such a process leads to the design of lattices based on triangular tensegrity prism units with bistable response. The additive manufacturing of these structures is performed through multiphoton lithography, which enables the fabrication of microscale structures with nanoscale features and extremely high resolution. Different modular lattices are fabricated with 250 nm strut radius and subsequently tested under loading-unloading uniaxial compression cycles. Compression test results confirm the activation of the bistable twisting mechanism in the examined lattices, combined with a moderate viscoelastic response. The force-displacement plots of 3D assemblies of bistable tensegrity prisms reveal a softening behavior during loading form the first stable configuration, up to a snapping event that drives the structure into a second stable configuration. The twisting mechanism that characterizes such a transition is preserved after unloading and during repeated loading-unloading cycles. The results of the present study demonstrate that fabrication of multistable tensegrity lattices is highly feasible via multiphoton lithography, and pave the way to the fabrication of multi-cell tensegrity metamaterials with unconventional static and dynamic responses.

Title: A tensegrity model of the spider dragline silk that paves the way to the design of next-generation biomimetic fibres
Authors: Fernando Fraternali1, Nicola Stehling2, Ada Amendola1, Chris Holland2, Cornelia Rodenburg 2,*
Affiliation: 1 Department of Civil Engineering, University of Salerno (Italy); [email protected], [email protected] 2 Department of Materials Science & Engineering, University of Sheffield (UK); [email protected] * Correspondence: [email protected];
Abstract: This work presents a tensegrity modelling of the spider silk that captures the microstructural characterization of the Nephila dragline silk through plasma etching and low-voltage scanning electron microscopy. The proposed model reproduces the region-dependent hierarchical organization of the spider dragline silk in microfibrils, which are formed by crystalline granules of -sheet crystals (crystalline domains) linked each other by polypeptide (amorphous) tendons (noncrystalline domains). The crystalline granules endow the fibrils with transverse stiffness and produce transverse contraction under longitudinal stretching (Poisson’s effect). The variability of the regional properties of the fibrils across the radial depth explains the enhanced toughness and energy absorption capacity of the spider silk. The proposed modelling paves the way to the optimal design of novel biomimetic fibres with unprecedented mechanical properties. Keywords: spider silk; scanning electron microscopy; mechanical modelling; tensegrity systems; biomimetic fibres.

Title: Optimal Shapes and Junctions of Spider Webs: from Nanostructure to Macro Response
Authors: D. De Tommasi1, G. Puglisi1, N.M. Pugno2
Affiliation: 1 Dipartimento di Scienze dell’Ingegneria Civile e dell’Architettura, Politecnico di Bari, Bari, Italy; [email protected]; [email protected] 2 Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento; Ket Lab, Edoardo Amaldi Foundation, Italian Space Agency; School of Engineering and Materials Science, Queen Mary University of London, U.K.; [email protected]
Abstract: Spider silks represent biological materials with incredible dissipative, strength and healing properties that descend from their complex nanostructure. The recent progress in the experimental techniques revealed that these extraordinary properties result by a ‘smart’ combination of materials, junctions and web geometric properties. These aspects are of great interest not only from an evolutionary and biological point of view, but also in the perspective of the design of innovative bioinspired materials and structures. Here, based on a multiscale model that we previously proposed, relating the macro response of the silk wires to their nanostructure, we analyze some important optimality properties of spider webs, taking care also of the fundamental role of silk junctions.

Title: Nonlocal thermo-viscoelastic responses analysis of viscoelastic laminated sandwich nanocomposites under non-uniform temperature
Authors: Chenlin Li
Affiliation: Lanzhou Jiaotong University, Lanzhou, China
Abstract: Viscoelastic laminated sandwich nanocomposite structure stands as a new class of smart nano-structure which is widely used as high-efficient shock absorbers in nanoengineering due to its excellent performance in vibration isolation and control. Especially under extreme non-isothermal conditions (e.g., high heat-flux, drastic change of temperature, etc.), how to improve the heat isolation and avoid unwanted vibrations appears to be particularly important for its safety working, and therefore a thorough and comprehensive study on such problems imperatively needed. This work aims to investigate the nonlocal thermo-viscoelastic responses of viscoelastic laminated sandwich nanocomposites under non-uniform temperature. It is assumed that the structure considered is subjected to symmetrical thermal loadings at its upper and lower bounding surfaces. The thermal contact resistance and elastic wave impedance at the interface are assumed to be zero with ideal adhesion. For each homogeneous isotropic layer, the governing equations are the first to be systematically formulated and solved by Laplace transformation techniques. The effects of size-dependent characteristic lengths and material constants ratio on structural responses are also evaluated and discussed. The strategy adopted in this work is expected to provide new insights on the vibration control and thermal management of viscoelastic laminated sandwich nanocomposites.

Back to TopTop