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Abstract: The simplest elasticity model of the foundation underlying a slender beam under flexure
was conceived by Winkler, requiring local proportionality between soil reactions and beam deflection.
Such an approach leads to well-posed elastostatic and elastodynamic problems, but as highlighted
by Wieghardt, it provides elastic responses that are not technically significant for a wide variety of
engineering applications. Thus, Winkler’s model was replaced by Wieghardt himself by assuming
that the beam deflection is the convolution integral between soil reaction field and an averaging kernel.
Due to conflict between constitutive and kinematic compatibility requirements, the corresponding
elastic problem of an inflected beam resting on a Wieghardt foundation is ill-posed. Modifications
of the original Wieghardt model were proposed by introducing fictitious boundary concentrated
forces of constitutive type, which are physically questionable, being significantly influenced on
prescribed kinematic boundary conditions. Inherent difficulties and issues are overcome in the
present research using a displacement-driven nonlocal integral strategy obtained by swapping
the input and output fields involved in Wieghardt’s original formulation. That is, nonlocal soil
reaction fields are the output of integral convolutions of beam deflection fields with an averaging
kernel. Equipping the displacement-driven nonlocal integral law with the bi-exponential averaging
kernel, an equivalent nonlocal differential problem, supplemented with non-standard constitutive
boundary conditions involving nonlocal soil reactions, is established. As a key implication, the
integrodifferential equations governing the elastostatic problem of an inflected elastic slender beam
resting on a displacement-driven nonlocal integral foundation are replaced with much simpler
differential equations supplemented with kinematic, static, and new constitutive boundary conditions.
The proposed nonlocal approach is illustrated by examining and analytically solving exemplar
problems of structural engineering. Benchmark solutions for numerical analyses are also detected.

Keywords: Wieghardt foundation; Bernoulli–Euler beams; nonlocal effects; integral nonlocal model

1. Introduction

Structural models of beams on an elastic foundation have been widely exploited by
the scientific community to describe engineering problems with numerous applications in
geotechnics, road, railroad, marine engineering, and biomechanics; see e.g., [1].

The problem of a beam subjected to transverse distributed loading proportional to its
deflection was considered by E. Winkler in the framework of the local theory of elasticity [2].
It was then considered to model railway tracks on continuous linear elastic foundations by
H. Zimmermann in his handbook on railway constructions [3]. Winkler and Zimmermann’s
theory quickly had followers due to its simplicity and easy mathematical treatment since
the soil was modeled in terms of one parameter as a continuous bed of independent linear
elastic one-dimensional springs with uniform stiffness.

However, E. Wieghardt [4] remarked that, in spite of its intuitive nature, Winkler’s
model was not physically fully reliable since it predicts sharp discontinuities in the beam-
soil profile at beam ends that are not actually present in real phenomena. However,
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Winkler’s approach can be effectively exploited to address other engineering applicative
problems, such as floating bridges and ice sheets [5–8], cemented lap joints [9,10], timber
facings [11], grillage structures [12,13], shrink-fit problems [14], cracks [15,16], and cracked
plates [17,18].

In 1922, Wieghardt proposed a model in which the deflection at each point of the
surface of the foundation depends on the response of the entire contact region beam-
soil through an integral of soil reactions weighted by a suitable kernel function. The
mathematical model thus depends on a stiffness parameter and on an additional parameter
entering the averaging kernel. Later on, this problem was tackled by W. Prager [19] and
P. Neményi [20] for two-dimensional foundations.

Subsequently, in the framework of the local theory of elasticity, two different soil
models characterized by two material parameters were introduced. The former was
proposed by M. Filonenko-Borodich [21] assuming that a membrane under tension is
interposed between beam and Winkler-type elastic springs. The latter was provided by P.
Pasternak [22] by considering a shear interaction among elastic springs modelling the soil.
A discussion on formulations of beam-soil and plate-soil interactions can be found in the
review paper by Wang et al. [23].

Winkler and Wieghardt Foundations

Let us consider a straight beam, with a cross section Ω, of length L laying on an elastic
foundation. The x-coordinate is taken along the beam length, the y-coordinate is along
the thickness (height), and the z-coordinate is along the beam width originating at the
cross-sectional elastic centre C. The pair {y, z} collects principal axes of geometric inertia
of the cross section Ω.

The classical Winkler theory of a continuous medium supporting a beam (see e.g., [2,3])
considers the elastic foundation composed of an infinite sequence of linear elastic springs,
and at each point, the foundation reaction per unit length is directly proportional to the
deflection of the foundation. The elastic foundation is characterized by a positive parameter
β representing the pressure to be orthogonally applied to the surface to obtain a unit vertical
displacement of the surface of the foundation. The modulus β is a volumetric density of
force, and denoting by b the width of the beam cross section in contact with the surface of
the elastic soil, the related stiffness is given by k = βb. Hence, the relationship between
reaction per unit length r(x) applied to the foundation surface and transverse displacement
v(x) is

r(x) = kv(x). (1)

We assume that the beam remains in contact with the foundation surface so that the
transverse displacement v of the beam coincides with the transverse displacement of the
surface of the foundation. According to the classical (local) Winkler elastic model provided
by Equation (1), the reaction at a point x is proportional to the displacement at the same
point. Hence, the mechanical model of the Winkler elastic foundation is illustrated by
linear springs unconnected with each other.

The refinement originally proposed by Wieghardt [4], afterwards analyzed in [24–27],
introduced the assumption that the transverse displacement v at a point of the foundation
surface depends on reactions r on other points of the foundation in a nonuniform way in
terms of the following Reaction-Driven (RD) integral convolution law

v(x, Lc) =
∫ L

0
φ(x− t, Lc)

r(t)
k

dt. (2)

The smoothing kernel φ depends on the characteristic length of Eringen nonlocal
elasticity Lc = λL, with λ > 0 being a non-dimensional nonlocal parameter, and is given
by the bi-exponential averaging function; see, e.g., [28,29]:

φ(x, Lc) =
1

2Lc
exp

(
−|x|

Lc

)
. (3)
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The maximum value of the bi-exponential function is obtained at x = 0 for any Lc and
decaying to zero at suitable distances. Thus, the Wieghardt model is of nonlocal nature and
this aspect makes it different from all the others, where basically the response at a point
depends on the displacement at that point.

2. Research Significance, Motivation, and Outline

It has to be pointed out that it is not possible to solve, in general, the nonlocal elastostatic
problem of a beam on a Wieghardt elastic foundation modelled by Equation (2), as high-
lighted by Wieghardt himself and discussed by T. Van Langendonck [24], A. Sollazzo [25],
A. Ylinen, and M. Mikkola [26].

In fact, the RD (Reaction-Driven) formulation of the Wieghardt elastic foundation
Equation (2) can be equivalently rewritten in the following differential form:

1
L2

c
v(x)− ∂2

xv(x) =
1

kL2
c

r(x), (4)

with x ∈ [0, L], subject to two RD Foundation Boundary Conditions (RDFBCs):
∂xv(x)|x=0 =

1
Lc

v(0)

∂xv(x)|x=L = − 1
Lc

v(L).
(5)

Proof of the result above is analogous to the one in [29] regarding Eringen’s internal
elasticity theory.

It is then apparent that ill-posedness of a Bernoulli–Euler beam on an RD model of
Wieghardt elastic foundation is related to the incompatibility between kinematic boundary
conditions and RDFBCs. In fact, Equation (5) forces the rotations ϕ(x) = ∂xv(x) of the
beam end cross-sections to coincide to corresponding transverse displacements divided by
the nonlocal parameter±Lc. Such requirements are not met by most of kinematic boundary
conditions of beams involved in technical applications.

In order to by-pass the ill-posedness of the elastostatic problem of a beam on Wieghardt
elastic foundation, two fictitious reactive forces exerted by the soil were introduced at the
beam end points [25]. Accordingly, the Modified Reaction-Driven (MRD) nonlocal model
of Wieghardt elastic foundation was introduced by defining the transverse displacement v
of the surface of the elastic foundation in terms of the reaction r and of two fictitious forces
A1 and A2 in the following form:

v(x) =
∫ L

0
φ(x− t, Lc)

r(t)
k

dt +
A1

2Lck
exp

(
− x

Lc

)
+

A2

2Lck
exp

(
x− L

Lc

)
. (6)

The elastic equilibrium problem of a beam on the modified Wieghardt elastic founda-
tion is reported for completeness in Appendix A. It is then apparent that the two fictitious
forces were added in order to match the number of unknowns of the problem with the six
boundary conditions of the elastostatic nonlocal differential problem; see also [30].

The motivation of the present paper consists in formulating a well-posed nonlocal
integral model of elastic foundation such that no fictitious forces are postulated at the
end points of Bernoulli–Euler beams in order to solve the relevant structural problem.
Specifically, the nonlocal model of elastic foundation is cast in the framework of Eringen
theory [31–33] requiring that reaction fields are outputs of convolutions between displace-
ment fields of the elastic foundation and a suitable averaging kernel. Such an approach of
external elasticity is thus named the displacement-driven nonlocal model.

It is worth recalling that, as acknowledged by the scientific community, Eringen’s
strain-driven nonlocal model of internal elasticity is inapplicable to structural problems
of applicative interest due to incompatibility between equilibrium and constitutive re-
quirements [34,35]. On the contrary, no conflict is present if the elastostatic problem of



Nanomaterials 2021, 11, 573 4 of 27

a Bernoulli–Euler beam resting on elastic foundation is formulated by considering the
displacement-driven nonlocal model of external elasticity.

However, the corresponding equations of elastic equilibrium are described by compli-
cated integrodifferential laws [36], the solution of which requires utilization of advanced
computational procedures. A skillful Finite Element Method (FEM) strategy was indeed
conceived in [37] to solve nonlocal dynamical problems of viscoelastic structures.

In this paper, the integrodifferential elastic problem of a beam resting on a displacement-
driven nonlocal foundation is shown to be equivalent to a much simpler differential prob-
lem that can be analytically solved without any additional complication with respect to
classical Winkler equations. The key idea consists in proving that the convolution integral
describing the nonlocal model of an elastic foundation is equivalent to an ordinary second-
order differential equation equipped with nonstandard constitutive boundary conditions.
The new approach is exploited to investigate the bending behavior of Bernoulli–Eulerelastic
beams on displacement-driven nonlocal foundation for a variety of boundary kinematic
constraints of technical interest. The effects of nonlocal parameters and the stiffness coeffi-
cient of the Winkler elastic soil on structural transverse displacements, reactions, bending,
and shear forces are analytically evaluated and compared with outcomes in literature.

3. Bernoulli–Euler Beams on Elastic Foundation

In a Bernoulli–Euler beam, applied loads and geometry are such that the displacements(
sx, sy, sz

)
along the coordinates (x, y, z) are functions of the x- and y-coordinates and are

given by
sx(x, y) = −∂xv(x)y, sy(x, y) = v(x), sz(x, y) = 0, (7)

where v is the transverse displacement of the cross section and the symbol ∂x(•) denotes
the derivative of the function • along the nanobeam axis x.

The rotation ϕ of the beam cross section is ϕ(x) = ∂xv(x) such that the nonvanishing
kinematically compatible deformation is given by the axial strain

εx(x, y) = −∂2
xv(x)y = −χ(x)y, (8)

where χ(x) = ∂2
xv(x) is the kinematically compatible bending curvature of the beam. In the

absence of thermal distortions, the kinematically compatible flexural curvature χ coincides
with the elastic bending curvature.

The stress resultant moment M is

M = −
∫

Ω
σydA = IEχ(x) (9)

with IE beingthe second moment of elastic area about the z axis of the distribution of
Young’s moduli E(y):

IE =
∫

Ω
E(y)y2dA. (10)

The differential equilibrium equation of a beam subject to a distributed transverse
load qy(x) per unit length in the interval [0, L] is given by ∂2

x M(x) = qy(x)− r(x) in [0, L]
with the boundary conditions T(x) = −∂x M(x) = F , M(x) =M at the beam end point
x = L and T(x) = −F , M(x) = −M at x = 0 with T shear force and (F ,M) transverse
force and couple, respectively.

Using the differential condition of equilibrium, the definition of bending curvature χ,
and Equation (9), we obtain the elastic equilibrium differential equation of the beam on an
elastic foundation in the following form:

IE∂4
xv(x) = qy(x)− r(x). (11)
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4. Elastic Equilibrium Problem of a Beam on Displacement-Driven Nonlocal Foundation

A well-posed nonlocal model of a beam lying on elastic foundation (see Figure 1) is
presented below.

Let us assume that reactions r are linked to the transverse displacement v of the surface
of the foundation in correspondence to the beam interval [0, L] by a Displacement-Driven
(DD) convolution integral in the following form:

r(x, Lc) =
∫ L

0
φ(x− t, Lc)kv(t)dt. (12)

For simplicity, in the sequel, explicit dependence of r on the characteristic length Lc
is dropped.

The bi-exponential kernel φ(x, Lc) Equation (3) fulfils normalization, symmetry, and
limit impulsivity conditions.

y

x
L

qy

r(x, Lc)

Figure 1. Geometric sketch of a free-beam on displacement-driven nonlocal foundation.

The symmetry condition φ(x, Lc) = φ(−x, Lc) of the function φ expresses the me-
chanical assumption that symmetrically placed points of the foundation with respect to
the considered point x have the same influence on the reactions r at x. Moreover, the
characteristic parameter Lc is a measure of how rapidly the influence of the displacement v
at a point t decreases with the distance from the considered point x. Denoting by δ(x) the
Dirac unit impulse at point x inside the structural interval, the impulsivity condition

lim
Lc→0+

φ(x, Lc) = δ(x) (13)

ensures that Equation (12) yields r(x) = kv(x), for Lc → 0+, so that the classical Winkler
model of an elastic foundation, see Equation (1), is recovered in ]0, L[ .

The elastostatic structural problem of a beam resting on nonlocal DD elastic foundation
can be formulated by considering the beam elastic equilibrium Equation (11), with classical
kinematic and static boundary conditions, and DD convolution integral of the nonlocal
elastic foundation Equation (12) as reported in Box 1.
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Box 1. Elastostatic structural problem of a beam on nonlocal displacement-driven DD elastic foundation.

IE∂4
xv(x) = qy(x)− r(x) Beam elastic equilibrium (14a)

{v(x), ϕ(x), M(x), T(x)}x={0,L} Kinematic and static BCs (14b)

r(x) =
∫ L

0
φ(x− t, Lc)kv(t)dt Nonlocal DD elastic foundation (14c)

A noteworthy result shows that the nonlocal integral Equation (14c) can be replaced
with an equivalent differential problem and foundation boundary conditions according to
the next proposition proved in Appendix B, starting from the results provided in [29].

Proposition 1 (Equivalence property for a displacement-driven (DD) elastic foundation).
The reactions r of the integral equation Equation (14c) with the special kernel Equation (3) provides
a unique solution of the constitutive differential equation of elastic foundation:

r(x)− L2
c ∂2

xr(x) = kv(x), (15)

with x ∈ [0, L], subject to the two homogeneous foundation boundary conditions (FBCs):
∂xr(x)|x=0 −

1
Lc

r(0) = 0

∂xr(x)|x=L +
1
Lc

r(L) = 0.
(16)

Accordingly, the DD convolution law Equation (14c) can be replaced with the differen-
tial equation in Equation (15) and the FBCs in Equation (16).

Hence, to solve the elastostatic model of a beam on a nonlocal DD model of the elastic
foundation, reported in Box 1, we substitute the transverse displacement v, obtained from
Equation (15), into Equation (14a). The elastostatic structural nonlocal differential problem
is thus reported in Box 2.

Box 2. Elastostatic structural differential problem of a beam on nonlocal DD elastic foundation.

IE
k

∂4
xr(x)− IEL2

c
k

∂6
xr(x) + r(x) = qy(x) Beam elastic equilibrium (17a)

{
1
k

r(x)− L2
c

k
∂2

xr(x),

1
k

∂xr(x)− L2
c

k
∂3

xr(x),

IE
k

∂2
xr(x)− IEL2

c
k

∂4
xr(x),

− IE
k

∂3
xr(x) +

IEL2
c

k
∂5

xr(x)
}

x={0,L}


Kinematic and static BCs (17b)

∂xr(x)|x=0 −
1
Lc

r(0) = 0

∂xr(x)|x=L +
1
Lc

r(L) = 0.

 FBCs (17c)
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The sixth-order differential equation of the elastic problem Equation (17a) can be
solved by using four classical kinematic and static boundary conditions following from
Equation (17b) in terms of reactions r and two FBCs Equation (17c).

The transverse displacement v in the beam interval [0, L] is obtained by Equation (15)
in terms of reactions r

v(x) =
1
k

r(x)− L2
c

k
∂2

xr(x). (18)

Further, bending moment and shear force fields of the beam are given by

M(x) =
IE
k

∂2
xr(x)− IEL2

c
k

∂4
xr(x)

T(x) = − IE
k

∂3
xr(x) +

IEL2
c

k
∂5

xr(x).

(19)

It is worth noting that the elastostatic structural problem of a beam on nonlocal DD
elastic foundation is solved without postulating the existence of any fictitious reactive force
at the beam end points as it must be done in the modified Wieghardt model.

Transverse Displacement of the Nonlocal Elastic Foundation Outside the Beam Interval

If the elastic foundation extends outside the beam interval [0, L], we can evaluate the
transverse displacement fields of the surface of the elastic foundation v1DD, for x ≤ 0, and
v2DD, for x ≥ L, by considering the following nonlocal expressions obtained by the RD
model Equation (2)

v1DD(x) =
∫ L

0
1

2Lck
exp

(
x− t

Lc

)
r(t)dt + C1 exp

(
x
Lc

)
for x ≤ 0

v2DD(x) =
∫ L

0
1

2Lck
exp

(
− x− t

Lc

)
r(t)dt + C2 exp

(
− x− L

Lc

)
for x ≥ L

(20)

where the reaction field r is the solution of the elastostatic structural problem of the beam
on the nonlocal DD elastic foundation. The parameters C1 and C2 are introduced in order
to fulfil the continuity requirement of the displacement field at the beam end points x = 0
and x = L.

Since the continuity of the displacement field at x = 0 and x = L requires

v1DD(0) = v(0), v2DD(L) = v(L), (21)

using Equation (20), the two parameters C1 and C2 are given in the following form:
C1 = v(0)−

∫ L
0

1
2Lck

exp
(
− t

Lc

)
r(t)dt

C2 = v(L)−
∫ L

0
1

2Lck
exp

(
− L− t

Lc

)
r(t)dt.

(22)

Hence, the transverse displacement fields Equation (20) of the surface of the elastic
foundation v1DD and v2DD are

v1DD(x) = v(0) exp
(
−|x|

Lc

)
for x ≤ 0

v2DD(x) = v(L) exp
(
− x− L

Lc

)
for x ≥ L.

(23)
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Remark 1. The transverse displacement fields v1DD and v2DD can also be obtained by differentiat-
ing Equation (20) to obtain

∂xv1DD(x) =
1
Lc

v1DD(x) for x ≤ 0

∂xv2DD(x) = − 1
Lc

v2DD(x) for x ≥ L.
(24)

The solution of the differential Equation (24) provides the transverse displacement fields of the
surface of the elastic foundation in terms of two integration constants Ĉ1 and Ĉ2:

v1DD(x) = Ĉ1 exp
(
−|x|

Lc

)
for x ≤ 0

v2DD(x) = Ĉ2 exp
(
− x

Lc

)
for x ≥ L.

(25)

Enforcing continuity of the displacement field at x = 0 and x = L Equation (21), it results in

Ĉ1 = v(0), Ĉ2 = v(L) exp
(

L
Lc

)
(26)

so that the transverse displacement fields of the surface of the elastic foundation v1DD and v2DD
are provided by inserting Equation (26) into Equation (25). The transverse displacement fields
Equation (23) are thus recovered.

Remark 2. The transverse displacement fields of the surface of the elastic foundation pertaining to
the MRD nonlocal model v1M, for x ≤ 0, and v2M, for x ≥ L, are given in the following form [25]:

v1M(x) =
∫ L

0
1

2Lck
exp

(
x− t

Lc

)
r(t)dt

+
A1

2Lck
exp

(
x
Lc

)
+

A2

2Lck
exp

(
x− L

Lc

) for x ≤ 0

v2M(x) =
∫ L

0
1

2Lck
exp

(
− x− t

Lc

)
r(t)dt

+
A1

2Lck
exp

(
− x

Lc

)
+

A2

2Lck
exp

(
− x− L

Lc

)
.

for x ≥ L

(27)

The two fictitious forces A1 and A2 are obtained by enforcing continuity of the displacement
field at x = 0 and x = L

v1M(0) = vM(0), v2M(L) = vM(L), (28)

with vM being the transverse displacement field of the surface of the elastic foundation obtained by
the MRD nonlocal model. Substituting such forces in Equation (27), the transverse displacement
fields v1M and v2M are given by

v1M(x) = vM(0) exp
(
−|x|

Lc

)
for x ≤ 0

v2M(x) = vM(L) exp
(
− x− L

Lc

)
for x ≥ L.

(29)

It is worth noting that Equation (29) turn out to be coincident to the ones reported in [25] and
to Equation (23) by replacing v(0) and v(L) with vM(0) and vM(L).
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5. Numerical Applications

We provide some numerical results of technical interest to illustrate the effectiveness
of the proposed methodology for the analysis of Bernoulli–Euler beams on a nonlocal
foundation. The free-beam (FF) under uniform load and simply supported beam (SS)
under uniform load are considered. The solution of the elastostatic problem for a beam on
a nonlocal DD elastic foundation is obtained by the nonlocal differential problem reported
in Box 2 that has been solved using Mathematica software by Stephen Wolfram [38]. This
solution is then compared with the MRD nonlocal model [25].

We consider the nonlocal elastostatic problem in a non-dimensional form by intro-
ducing the following non-dimensional quantities: abscissa ξ, nonnegative length-scale
parameter λ, transverse displacement v∗, transverse load q∗y , transverse force F ∗, Winkler
modulus k∗, reaction r∗, bending moment M∗, and shear force T∗

ξ =
x
L

, λ =
Lc

L
, v∗ =

v
L

, q∗y =
qyL3

IE
, F ∗ = FL2

IE

k∗ =
kL4

IE
, r∗ =

rL3

IE
, M∗ =

ML
IE

, T∗ =
TL2

IE
.

(30)

The non-dimensional length-scale parameter is λ ∈ {0+, 0.10, 0.20, 0.30, 0.40, 0.50},
where λ = 0+ stands for λ → 0, and the non-dimensional Winkler modulus is
k∗ ∈ {0, 0.4, 2, 10, 20}.

5.1. Free Beam on a Nonlocal Foundation Subject to a Uniformly Distributed Load

Let us consider an FF beam on a nonlocal elastic foundation subject to a non-dimensional
uniform transverse load q∗y = −1.

The solution of the beam on a nonlocal DD elastic foundation can be provided by
solving Equation (17a) of Box 2 rewritten in the non-dimensional form

− ∂6
ξr∗(ξ) +

1
λ2 ∂4

ξr∗(ξ) +
k∗

λ2 r∗(ξ) = − k∗

λ2 (31)

equipped with the classical non-dimensional static boundary conditions at the beam end
points following from Equation (17b), i.e., M∗(0) = T∗(0) = M∗(1) = T∗(1) = 0, and the
FBCs in Equation (17c) in the form

∂2
ξr∗(ξ)

∣∣∣
ξ=0
− λ2∂4

ξr∗(ξ)
∣∣∣
ξ=0

= 0

−∂3
ξr∗(ξ)

∣∣∣
ξ=0

+ λ2 ∂5
ξr∗(ξ)

∣∣∣
ξ=0

= 0

∂2
ξr∗(ξ)

∣∣∣
ξ=1
− λ2 ∂4

ξr∗(ξ)
∣∣∣
ξ=1

= 0

−∂3
ξr∗(ξ)

∣∣∣
ξ=1

+ λ2 ∂5
ξr∗(ξ)

∣∣∣
ξ=1

= 0

∂ξr∗(ξ)
∣∣
ξ=0 −

1
λ

r∗(0) = 0

∂ξr∗(ξ)
∣∣
ξ=1 +

1
λ

r∗(1) = 0.

(32)

The non-dimensional transverse displacement v∗ of the beam is then given by
Equation (18) in terms of the non-dimensional foundation reactions r∗

v∗(x) =
1
k∗

r∗(ξ)− λ2

k∗
∂2

ξr∗(ξ). (33)
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The non-dimensional bending moment and shear force follow from Equation (19):
M∗(ξ) =

1
k∗

∂2
ξr∗(ξ)− λ2

k∗
∂4

ξr∗(ξ)

T∗(ξ) = − 1
k∗

∂3
ξr∗(ξ) +

λ2

k∗
∂5

ξr∗(ξ).
(34)

The non-dimensional transverse displacement of the surface of the elastic foundation
outside the beam interval [0, L] can be obtained by Equation (23) in the following form:

v∗1DD(ξ) = v∗(0) exp
(
−|ξ|

λ

)
for ξ ≤ 0

v∗2DD(ξ) = v∗(1) exp
(
− ξ − 1

λ

)
for ξ ≥ 1,

(35)

where v∗(0) and v∗(1) are the non-dimensional displacements at the beam end points.
The solution of the FF beam on the nonlocal DD elastic foundation yields the classical

solution of the FF beam on a Winkler foundation by letting λ→ 0+.
The non-dimensional transverse deflection v∗, reaction r∗, and bending moment M∗

at the midpoint ξ = 1/2 of the free beam subjected to a uniform transverse load are
presented in Tables 1–3 using the DD and MRD nonlocal models for several values of the
non-dimensional Winkler parameter k∗ and length-scale parameter λ.

Table 1. Free beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional maximum displacement
v∗(1/2) versus the non-dimensional length-scale parameter λ evaluated by the non-dimensional Winkler parameter
k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD models.

v∗ (1/2)

λ
DD MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0+ −2.5 −0.5 −0.1 −0.05 −2.5 −0.5 −0.1 −0.05
0.1 −2.7775 −0.555285 −0.110845 −0.0552931 −2.08434 −0.41767 −0.0843029 −0.0425966
0.2 −3.11944 −0.623643 −0.124485 −0.0620923 −1.78773 −0.359129 −0.0732901 −0.0374405
0.3 −3.51736 −0.703245 −0.140422 −0.0700698 −1.56541 −0.315348 −0.0650625 −0.0335266
0.4 −3.95023 −0.789841 −0.157764 −0.0787552 −1.39259 −0.28135 −0.0586113 −0.030365
0.5 −4.40376 −0.880569 −0.175931 −0.0878521 −1.25437 −0.254164 −0.0533617 −0.0277079

Table 2. Free beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional midpoint foundation
reaction r∗(1/2) versus the non-dimensional length-scale parameter λ evaluated by the non-dimensional Winkler parameter
k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD models.

r∗ (1/2)

λ
DD MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0+ −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0
0.1 −1.10354 −1.10322 −1.10166 −1.09974 −0.833821 −0.835754 −0.845019 −0.85574
0.2 −1.14542 −1.14522 −1.14425 −1.14305 −0.71566 −0.721065 −0.746027 −0.773076
0.3 −1.14127 −1.14117 −1.14065 −1.14001 −0.627843 −0.638892 −0.687364 −0.735528
0.4 −1.12745 −1.12739 −1.1271 −1.12673 −0.560558 −0.579707 −0.658509 −0.729175
0.5 −1.11353 −1.1135 −1.11332 −1.1131 −0.507919 −0.537668 −0.651312 −0.742323

The two non-dimensional fictitious forces A∗1 = A∗2 of the beam on the nonlocal MRD
elastic foundation are reported in Table 4. The non-dimensional transverse displacement v∗
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of the surface of the nonlocal elastic foundation in the interval [0.5, 3] is reported in Table 5
for the DD and MRD nonlocal models for increasing values of Winkler parameter k∗ and
for the length-scale parameter λ = 0.5. The non-dimensional transverse displacement v∗ of
the surface of the elastic foundation in the interval [−2, 3], obtained by the DD and MRD
methods, are reported in Figure 2a,c, respectively, in terms of the length-scale parameter λ
with k∗ = 10. The zoom of the beam deflection is reported in Figure 2b for the DD method
and in Figure 2d for the MRD method.

Table 3. Free beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional midpoint bending moment
M∗(1/2) versus the non-dimensional length-scale parameter λ evaluated by the non-dimensional Winkler parameter
k∗ ∈ {0.4, 2, 10, 20} in the Displacement-Driven (DD) and Modified Reaction-Driven (MRD) models.

M∗ (1/2)

λ
DD MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0+ 0 0 0 0 0 0 0 0
0.1 −0.00840319 −0.00838687 −0.00830616 −0.00820727 0.0207943 0.0206397 0.0198977 0.0190375
0.2 −0.00995599 −0.00994611 −0.00989699 −0.00983623 0.0355889 0.0350958 0.0328139 0.0303315
0.3 −0.00922294 −0.00921768 −0.00919144 −0.00915884 0.0465999 0.0455298 0.0408201 0.0361086
0.4 −0.00816841 −0.00816543 −0.00815058 −0.00813209 0.0550571 0.0531471 0.0452469 0.038086
0.5 −0.00721239 −0.00721058 −0.00720154 −0.00719027 0.0616985 0.0586827 0.0470779 0.037633

Table 4. Free beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional
parameters A∗1 = A∗2 versus the non-dimensional length-scale parameter λ evaluated by the non-
dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the MRD model.

A∗
1 = A∗

2

λ
MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0.1 −0.0832594 −0.0829661 −0.0815572 −0.0799202
0.2 −0.142532 −0.141251 −0.135315 −0.128836
0.3 −0.186708 −0.183624 −0.170018 −0.156337
0.4 −0.220721 −0.214963 −0.191062 −0.169231
0.5 −0.247531 −0.23823 −0.202257 −0.172651

Table 5. Free beam subjected to a non-dimensional uniform load q∗y = −1 with the non-dimensional length-scale parameter
λ = 0.5. Non-dimensional displacement v∗(ξ) evaluated by the non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in
the DD and MRD models.

v∗(ξ) with λ = 0.5

ξ
DD MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0.5 −4.40376 −0.880569 −0.175931 −0.0878521 −1.25437 −0.254164 −0.0533617 −0.0277079
0.6 −4.40379 −0.880604 −0.175967 −0.0878876 −1.25407 −0.253872 −0.0531278 −0.0275208
0.7 −4.40389 −0.880706 −0.176068 −0.0879886 −1.25317 −0.253021 −0.0524435 −0.0269726
0.8 −4.40405 −0.880858 −0.17622 −0.0881401 −1.25176 −0.251679 −0.0513622 −0.0261034
0.9 −4.40423 −0.88104 −0.176402 −0.0883215 −1.24996 −0.249964 −0.049975 −0.0249838
1.0 −4.40442 −0.881232 −0.176594 −0.0885133 −1.24794 −0.24804 −0.0484141 −0.0237196

1.2 −2.95237 −0.590707 −0.118374 −0.0593323 −0.836521 −0.166266 −0.032453 −0.0158997
1.4 −1.97903 −0.395963 −0.0793487 −0.0397716 −0.560737 −0.111451 −0.021753 −0.0106579
1.6 −1.32659 −0.265422 −0.053189 −0.0266597 −0.375873 −0.0747081 −0.0145821 −0.0071442
1.8 −0.889237 −0.177918 −0.0356536 −0.0178705 −0.251955 −0.0500784 −0.00977464 −0.0047889
2.0 −0.596073 −0.119262 −0.0238994 −0.011979 −0.168891 −0.0335685 −0.00655214 −0.00321009
2.2 −0.39956 −0.0799436 −0.0160202 −0.00802975 −0.113211 −0.0225017 −0.0043920 −0.00215179
2.4 −0.267833 −0.0535878 −0.0107387 −0.0053825 −0.0758875 −0.0150833 −0.00294407 −0.00144239
2.6 −0.179534 −0.035921 −0.00719835 −0.003608 −0.0508689 −0.0101106 −0.00197347 −0.000966862
2.8 −0.120345 −0.0240785 −0.0048252 −0.00241851 −0.0340984 −0.00677737 −0.00132285 −0.00064810
3.0 −0.0806698 −0.0161403 −0.00323443 −0.00162118 −0.0228569 −0.00454301 −0.000886735 −0.000434439
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Figure 2. FF− q beam. Plots of the non-dimensional transverse displacement v∗ of the surface of
the elastic foundation for increasing values of the non-dimensional non-local parameter λ in the
set
{

0+, 0.1, 0.2, 0.3, 0.4, 0.5
}

with k∗ = 10: (a) DD method, (b) MRD method, (c) zoom of the beam
deflection using the DD method, (d) zoom of the beam deflection using the MRD method.

Note that the displacements v∗(1/2) of the surface of the foundation obtained by solv-
ing the beam on the nonlocal DD model of the elastic foundation are greater than the corre-
sponding ones provided by the MRD model for a given λ and k∗; see
Tables 1 and 5. The displacements of the surface of the foundation obtained by solv-
ing the beam on the nonlocal DD and MRD models of the elastic foundation decrease for
increasing values of the Winkler parameter k∗ at a given value of λ. The displacement
v∗(1/2) obtained by solving the beam on the nonlocal DD elastic foundation increases for
increasing values of λ at a given value of the Winkler parameter k∗ and decreases for the
nonlocal MRD model.

The non-dimensional reaction r∗ applied on the surface of the elastic foundation and
obtained by the DD model is plotted in Figure 3 in terms of the length-scale parameter λ
with k∗ = 10.
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Figure 3. FF− q beam. DD method: plots of the non-dimensional reaction r∗ of the elastic foundation
for increasing values of the non-dimensional non-local parameter λ in the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = 10.
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The reactions r∗(1/2) obtained by solving the beam on the nonlocal DD model of
the elastic foundation are greater than the corresponding ones provided by the MRD
method for a given λ and k∗; see Table 2. The reactions obtained by solving the beam
on the nonlocal DD model of the elastic foundation decrease for increasing values of the
Winkler parameter k∗ at a given value of λ and increases for the nonlocal MRD method.
The reactions r∗(1/2) obtained by solving the beam on the nonlocal DD elastic foundation
increases for increasing values of λ at a given value of the Winkler parameter k∗ and then
decreases. The reactions r∗(1/2) obtained by solving the beam on the nonlocal MRD model
of the elastic foundation decreases for increasing values of λ at a given value of the Winkler
parameter k∗.

The non-dimensional bending moment M∗ and shear force T∗ obtained by the DD
model are plotted in terms of the length-scale parameter λ with k∗ = 10 in Figure 4a,b. The
slope of the bending moment and, hence, the shear force T∗ at the beam end points of the
free beam vanishes for any value of the length-scale parameter λ.
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Figure 4. FF− q beam. Plots for increasing values of the non-dimensional non-local parameter λ in
the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = 10 of (a) non-dimensional bending moment M∗ using the

DD method and (b) non-dimensional shear force T∗ using the DD method.
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The bending moment M∗ obtained by solving the beam on the nonlocal DD model of
the elastic foundation is smaller than the corresponding ones provided by the MRD model
for a given λ and k∗; see Table 3. The bending moment M∗ obtained by solving the beam on
the nonlocal DD and MRD models of the elastic foundation decreases for increasing values
of the Winkler parameter k∗ at a given value of λ. The bending moment M∗ obtained by
solving the beam on the nonlocal DD elastic foundation increases for increasing values of
λ at a given value of the Winkler parameter k∗ and then decreases. The bending moment
M∗ obtained by solving the beam on the nonlocal MRD model of the elastic foundation
increases for increasing values of λ at a given value of the Winkler parameter k∗.

A comparison of the non-dimensional displacement v∗(1/2), reaction r∗(1/2), bend-
ing moment M∗(1/2), and shear force T∗(−1) obtained by the DD and MRD models are
plotted in Figures 5a–d.
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Figure 5. FF − q beam. Comparison of the DD and MRD methods for increasing values of the
non-dimensional non-local parameter λ in the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = {0.4, 2, 10}:

(a) non-dimensional transverse midpoint displacement v∗(1/2), (b) dimensionless reaction r∗(1/2),
(c) non-dimensional bending moment M∗(1/2), and (d) non-dimensional shear force T∗(−1).

5.2. Simply Supported Beam on a Nonlocal Foundation Subject to a Uniformly Distributed Load

Let us consider a SS beam on a nonlocal elastic foundation subject to a non-dimensional
uniform transverse load q∗y = −1.

The solution of the beam on a nonlocal DD elastic foundation using the differen-
tial approach can be provided by solving Equation (17a) of Box 2 rewritten in the non-
dimensional form

− ∂6
ξr∗(ξ) +

1
λ2 ∂4

ξr∗(ξ) +
k∗

λ2 r∗(ξ) = − k∗

λ2 (36)

equipped with the classical kinematic and static boundary conditions at the beam end
points following from Equation (17b), i.e., v∗(0) = M∗(0) = v∗(1) = M∗(1) = 0, and the
FBCs following from Equation (17c) in the non-dimensional form
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r∗(0)− λ2∂2
ξr∗(ξ)

∣∣∣
ξ=0

= 0

∂2
ξr∗(ξ)

∣∣∣
ξ=0
− λ2 ∂4

ξr∗(ξ)
∣∣∣
ξ=0

= 0

r∗(1)− λ2∂2
ξr∗(ξ)

∣∣∣
ξ=1

= 0

∂2
ξr∗(ξ)

∣∣∣
ξ=1
− λ2 ∂4

ξr∗(ξ)
∣∣∣
ξ=1

= 0

∂ξr∗(ξ)
∣∣
ξ=0 −

1
λ

r∗(0) = 0

∂ξr∗(ξ)
∣∣
ξ=1 +

1
λ

r∗(1) = 0.

(37)

The non-dimensional transverse displacement v∗ of the beam is then given by
Equation (18) in terms of the non-dimensional foundation reactions r∗

v∗(x) =
1
k∗

r∗(ξ)− λ2

k∗
∂2

ξr∗(ξ). (38)

The non-dimensional bending moment M∗ and shear force T∗ follow from Equation (19).
The non-dimensional classical displacement and bending moment at the midpoint

of the SS beam with no elastic foundation (NEF) are − 5
384

= −0.0130208 and
1
8
= 0.125,

respectively, and the non-dimensional shear force at ξ = 1 is
1
2
= 0.5.

The DD and MRD models yield the classical solution of a beam on a Winkler founda-
tion by letting λ→ 0+.

The non-dimensional transverse displacement v∗, foundation reactions r∗, and bend-
ing moment M∗ at the midpoint ξ = 1/2 and the shear force T∗(1) of the SS beam
are presented in Tables 6–9 using the DD and MRD models for several values of non-
dimensional Winkler parameter k∗ and non-dimensional length-scale parameter λ. The
two non-dimensional fictitious forces A∗1 = A∗2 of the beam on the nonlocal MRD elastic
foundation are reported in Table 10.

The displacements v∗(1/2) of the surface of the foundation obtained by the DD model
are greater than the corresponding ones provided by the MRD model for a given λ and k∗.

The non-dimensional transverse displacement v∗ obtained by the DD model is re-
ported in Figure 6 in terms of the length-scale parameter λ with k∗ = 10.

NEF
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Figure 6. SS− q beam. DD method: plots of the non-dimensional transverse displacement v∗ of the
surface of the elastic foundation for increasing values of the non-dimensional non-local parameter λ

in the set
{

0+, 0.1, 0.2, 0.3, 0.4, 0.5
}

with k∗ = 10.
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The non-dimensional transverse displacement v∗(1/2) obtained by solving the beam
on the nonlocal DD elastic foundation are greater than the corresponding ones provided by
the MRD model for a given λ and k∗; see Table 6. The displacement v∗(1/2) obtained by
solving the beam on the nonlocal DD and MRD models of the elastic foundation decreases
for increasing values of the Winkler parameter k∗ at a given value of λ.

Table 6. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional maximum
displacement v∗(1/2) versus the non-dimensional length-scale parameter λ evaluated by the non-dimensional Winkler
parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD models.

v∗ (1/2)

λ
DD MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0+ −0.0129674 −0.0127579 −0.011804 −0.0107944 −0.0129674 −0.0127579 −0.011804 −0.0107944
0.1 −0.0129713 −0.0127769 −0.0118858 −0.0109322 −0.0129621 −0.0127325 −0.0116961 −0.0106152
0.2 −0.0129781 −0.0128101 −0.012031 −0.0111806 −0.0129464 −0.012657 −0.0113839 −0.0101115
0.3 −0.0129842 −0.0128399 −0.0121636 −0.0114121 −0.0129203 −0.0125331 −0.010899 −0.00937019
0.4 −0.0129891 −0.0128637 −0.0122715 −0.0116035 −0.0128839 −0.0123637 −0.0102855 −0.00849743
0.5 −0.0129929 −0.0128826 −0.0123577 −0.0117587 −0.0128374 −0.0121524 −0.00959096 −0.00758798

The displacement v∗(1/2) obtained by solving the beam on the nonlocal DD model of
the elastic foundation increases for increasing values of λ at a given valued of the Winkler
parameter k∗ and decreases for the nonlocal MRD model.

The non-dimensional reaction r∗ applied on the surface of the elastic foundation and
obtained by the DD model is plotted in Figure 7 in terms of the length-scale parameter λ
with k∗ = 10.
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Figure 7. SS− q beam. DD method: plots of the non-dimensional reaction r∗ of the elastic foundation
for increasing values of the non-dimensional non-local parameter λ in the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = 10.

The reactions r∗(1/2) obtained by solving the beam on the nonlocal DD model of the
elastic foundation are smaller than the corresponding ones provided by the MRD model
for a given λ and k∗; see Table 7. The reactions r∗(1/2) obtained by solving the beam on
the nonlocal DD and MRD models decrease for increasing values of the Winkler parameter
k∗ at a given value of λ and then increases. The reactions r∗(1/2) obtained by solving
the beam on the nonlocal DD model of the elastic foundation decreases for increasing
values of λ at a given value of the Winkler parameter k∗. On the contrary, the reactions
r∗(1/2) obtained by solving the beam on the nonlocal MRD model of the elastic foundation
increases for increasing values of λ at a given value of the Winkler parameter k∗.
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The non-dimensional bending moment M∗ and shear force T∗ of the DD model are
plotted in terms of the length-scale parameter λ with k∗ = 10 in Figure 8a,b. The non-
dimensional bending moment M∗ and shear force T∗ depend on the value the length-scale
parameter λ.

Table 7. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional midpoint
foundation reaction r∗(1/2) versus the non-dimensional length-scale parameter λ evaluated by the non-dimensional
Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD models.

r∗ (1/2)

λ
DD MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0+ −0.00518695 −0.0255157 −0.11804 −0.215888 −0.00518695 −0.0255157 −0.11804 −0.215888
0.1 −0.00473987 −0.0233446 −0.108595 −0.199791 −0.00568254 −0.0279081 −0.128154 −0.232559
0.2 −0.00392519 −0.0193724 −0.0909833 −0.169134 −0.00716682 −0.0350271 −0.157386 −0.279296
0.3 −0.00325168 −0.016078 −0.0761649 −0.142938 −0.00963245 −0.0467014 −0.202683 −0.347708
0.4 −0.00275059 −0.0136205 −0.0649725 −0.122886 −0.0130672 −0.0626567 −0.259779 −0.427556
0.5 −0.00237493 −0.011774 −0.0564754 −0.107486 −0.0174544 −0.082531 −0.324063 −0.509754

The bending moment M∗(1/2) obtained by solving the beam on the nonlocal DD
elastic foundation are greater than the corresponding ones provided by the MRD model
for a given λ and k∗; see Table 8. The bending moment M∗(1/2) obtained by solving
the beam on the nonlocal DD and MRD models of the elastic foundation decrease for
increasing values of the Winkler parameter k∗ at a given value of λ. The bending moment
M∗(1/2) obtained by solving the beam on the nonlocal DD elastic foundation increases
for increasing values of λ at a given value of the Winkler parameter k∗. The bending
moment M∗(1/2) obtained by solving the beam on the nonlocal MRD model of the elastic
foundation decreases for increasing values of λ at a given value of the Winkler parameter k∗.

Table 8. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional midpoint
bending moment M∗(1/2) versus the non-dimensional length-scale parameter λ evaluated by the non-dimensional Winkler
parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD models.

M∗ (1/2)

λ
DD MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0+ 0.124473 0.122406 0.112995 0.103036 0.124473 0.122406 0.112995 0.103036
0.1 0.124512 0.122598 0.113826 0.104439 0.124421 0.122156 0.111935 0.101277
0.2 0.124582 0.122936 0.115305 0.106976 0.124266 0.121414 0.108867 0.0963317
0.3 0.124643 0.123235 0.116638 0.109306 0.124009 0.120195 0.104103 0.0890578
0.4 0.124691 0.123472 0.11771 0.111212 0.123651 0.118529 0.0980778 0.0805024
0.5 0.124729 0.123658 0.118562 0.112747 0.123194 0.116452 0.0912613 0.0715989
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Figure 8. SS− q beam. Plots for increasing values of the non-dimensional non-local parameter λ in
the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = 10 of (a) non-dimensional bending moment M∗ using the

DD method and (b) non-dimensional shear force T∗ using the DD method.

A comparison of the midpoint non-dimensional displacement v∗(1/2), reaction
r∗(1/2), bending moment M∗(1/2), and shear force T(1) of the DD and MRD meth-
ods are plotted in Figure 9a–d. Numerical outcomes of non-dimensional shear force T(1)
of DD and MRD methods are given in Table 9 while numerical results of non-dimensional
parameters A∗1 = A∗2 obtained by the MRD method are provided in Table 10.
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Figure 9. SS − q beam. Comparison of the DD and MRD methods for increasing values of the
non-dimensional non-local parameter λ in the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = {0.4, 2, 10}:

(a) non-dimensional transverse midpoint displacement v∗(1/2), (b) dimensionless reaction r∗(1/2),
(c) non-dimensional bending moment M∗(1/2), and (d) non-dimensional shear force T∗(1).

Table 9. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional shear force
T∗(1) versus the non-dimensional length-scale parameter λ evaluated by the non-dimensional Winkler parameter k∗ ∈
{0.4, 2, 10, 20} in the DD and MRD models.

T∗ (1)

λ
DD MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0+ 0.49834 0.491834 0.462207 0.430842 0.49834 0.491834 0.462207 0.430842
0.1 0.498415 0.492192 0.463669 0.433139 0.498175 0.491035 0.4588 0.425162
0.2 0.498576 0.492972 0.466991 0.43863 0.49768 0.488657 0.448937 0.409178
0.3 0.498743 0.493787 0.470565 0.444756 0.496858 0.484753 0.433596 0.385589
0.4 0.498889 0.494496 0.473746 0.450343 0.495712 0.479413 0.414148 0.357704
0.5 0.499009 0.495087 0.476435 0.45515 0.494248 0.472753 0.392079 0.328478

Table 10. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1. Non-
dimensional parameters A∗1 = A∗2 versus the non-dimensional length-scale parameter λ evaluated
by the non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the MRD model.

A∗
1 = A∗

2

λ
MRD

k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0.1 0.000165929 0.00081521 0.00375032 0.00682117
0.2 0.000662923 0.00324183 0.0146081 0.0260151
0.3 0.00148862 0.00722391 0.0314937 0.0543281
0.4 0.0026391 0.0126718 0.0528961 0.087776
0.5 0.00410896 0.0194672 0.0771786 0.1228
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6. Concluding Remarks

The bending behavior of a beam resting on an elastic foundation was investigated by
using a well-posed displacement-driven (DD) nonlocal integral approach. The nonlocal
equations governing the relevant structural problem were formulated by conveniently
replacing the DD convolution integral characterizing the soil elasticity model with an equiv-
alent nonlocal differential relation and constitutive boundary conditions. No concentrated
forces at beam boundary (x = 0 , x = L) are needed in the proposed DD formulation to
obtain well-posedness of the relevant structural elastostatic problem. This is a significant
advancement with respect to the original Wieghardt nonlocal foundation model [4] and its
modification by Van Langendonck and Sollazzo [24,25], where additional constitutive terms
were imposed to obtain well-posedness but without a clear physical interpretation. the
effects of various factors, such as the Winkler modulus and nonlocal length-scale parameter,
on bending elastic responses of free and simply supported beams under different loading
conditions and external constraints of applicative interest were established, examined,
and discussed. Extensive numerical data were given in tabular form for several values
of geometric and constitutive non-dimensional parameters. These data could provide
useful benchmarks for future studies. The proposed DD foundation model were shown to
provide a significant assessment of nonlocal effects for any loading system and kinematic
boundary conditions. Difficulties and issues involved in some classical analyses are thus
overcome ab initio. Future developments will be focused on reasonable extensions of the
DD nonlocal approach to be adopted for the simulation of ultra-elastic models of soils.
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List of Acronyms
DD Displacement-Driven
FBCs Foundation Boundary Conditions
FF Free-Free beam
MFBCs Modified Foundation Boundary Conditions
MRD Modified Reaction-Driven
NEF No Elastic Foundation
SS Simply Supported beam
RD Reaction-Driven
RDFBCs Reaction-Driven foundation boundary conditions

Appendix A

The Modified Reaction-Driven (MRD) nonlocal model of a Wieghardt elastic founda-
tion postulates the existence of two fictitious forces at the end points x = 0 and x = L of the
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beam. Denoting by A1 and A2 such fictitious forces, the modified Wieghardt convolution
integral Equation (6) is rewritten hereafter for convenience:

v(x) =
∫ L

0
φ(x− t, Lc)

r(t)
k

dt +
A1

2Lck
exp

(
− x

Lc

)
+

A2

2Lck
exp

(
x− L

Lc

)
. (A1)

The nonlocal integral equation Equation (A1) can be replaced with an equivalent
differential formulation and modified foundation boundary conditions (MFBCs) according
to the next proposition, which can be proven following a similar reasoning to the one
reported in Appendix B.

Proposition A1 (Equivalence property for the MRD model of a Wieghardt foundation.).
The transversal displacement v obtained from the MRD Equation (A1) with the special kernel
Equation (3) provides a unique solution of the differential equation

1
L2

c
v(x)− ∂2

xv(x) =
1

kL2
c

r(x), (A2)

with x ∈ [0, L], subject to the two homogeneous modified foundation boundary conditions (MFBCs):
∂xv(x)|x=0 −

1
Lc

v(0) +
A1

L2
c k

= 0

∂xv(x)|x=L +
1
Lc

v(L)− A2

L2
c k

= 0.
(A3)

The elastostatic structural problem of a beam on a nonlocal MRD foundation can be
obtained by substituting the reaction r, obtained from Equation (A2), into Equation (11).
Hence, we obtain the differential governing equation of a beam on a MRD model of the
Wieghardt foundation in terms of the transverse displacement v

IE∂4
xv(x)− kL2

c ∂2
xv(x) + kv(x) = qy(x) (A4)

equipped with the classical kinematic and static boundary conditions by specifying
{v, ∂xv, M, ∂x M} at the beam end points x = {0, L} and the MFBCs in Equation (A3).

It is apparent that the four integration constants following from Equation (A4) and the
two unknown fictitious forces A1 and A2 at the end points of the Wieghardt foundation
can be obtained by solving the linear sistem of equations obtained by imposing the four
classical (local) constraint conditions of the beam and the two MFBCs in Equation (A3).

The foundation reactions r follow from Equation (A2) or equivalently from Equation (11)
in terms of the transverse displacement v as

r(x) = kv(x)− kL2
c ∂2

xv(x), (A5)

where the bending moment is M(x) = IE∂2
xv(x) and the shear force is T(x) = −IE∂3

xv(x).

Appendix B

Let us prove the following result.

Proposition A2 (Equivalence property for the displacement-driven (DD) model of an
elastic foundation). The following nonlocal constitutive law equipped with the bi-exponential
kernel Equation (3)

r(x) =
∫ L

0
φ(x− t, Lc)kv(t)dt. (A6)

with x ∈ [0, L] is equivalent to the differential relation

r(x)− L2
c ∂2

xr(x) = kv(x) (A7)
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subject to the following two foundation boundary conditions (FBC)
∂xr(x)|x=0 −

1
Lc

r(0) = 0

∂xr(x)|x=L +
1
Lc

r(L) = 0.
(A8)

Proof. Since the bi-exponential averaging function is given by

φ(x− t, Lc) =
1

2Lc
exp

(
−|x− t|

Lc

)
, (A9)

and the integral convolution Equation (A6) can be rewritten in the form

r(x) =
∫ x

0
φ(x− t, Lc)kv(t)dt +

∫ L

x
φ(x− t, Lc)kv(t)dt, (A10)

a direct evaluation provides the first derivative of the foundation reactions r:

∂xr(x) =
k

2Lc
v(x)− 1

Lc

∫ x
0 φ(x− t, Lc) kv(t)dt+

− k
2Lc

v(x) +
1
Lc

∫ L
x φ(x− t, Lc) kv(t)dt

= − 1
Lc

∫ x
0 φ(x− t, Lc) kv(t)dt

+
1
Lc

∫ L
x φ(x− t, Lc) kv(t)dt.

(A11)

The second derivative of the convolution Equation (A10) follows from Equation (A11)
to obtain

∂2
xr(x) = − k

2L2
c

v(x) +
1
L2

c

∫ x
0 φ(x− t, Lc) kv(t)dt+

− k
2L2

c
v(x) +

1
L2

c

∫ L
x φ(x− t, Lc) kv(t)dt

= − k
L2

c
v(x) +

1
L2

c

∫ L
0 φ(x− t, Lc) kv(t)dt.

(A12)

Recalling Equation (A6) and rearranging the terms in Equation (A12), Equation (A7)
is recovered.

The FBCs in Equation (A8) of the nonlocal model follow by evaluating Equation (A11)
at the beam boundary points x = 0 and x = L. In fact, we have at x = 0

∂xr(x)|x=0 =
1
Lc

[∫ L

0
φ(−ξ, Lc) kv(t)dt

]
=

1
Lc

r(0) (A13)

and the FBC in Equation (A8)1 is recovered.
Analogously, setting x = L in Equation (A11), we obtain

∂xr(x)|x=L = − 1
Lc

[∫ L

0
φ(L− t, Lc) kv(t)dt

]
= − 1

Lc
r(L) (A14)

and the FBC in Equation (A8)2 is recovered.
The uniqueness of the solution of Equation (A7) is consequent to the fact that the

homogeneous differential problem (with v(x) = 0), subject to the FBCs, admits only the
trivial solution.
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