Topical Collection "Minerals in Coal and Coal Combustion Products"

Editors

Prof. Dr. Shifeng Dai

Collection Editor
State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
Interests: coal mineralogy; coal geochemistry; coal petrology; coal geochemistry; coal combustion products
Special Issues and Collections in MDPI journals
Dr. David French

Collection Editor
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
Interests: coal geology and utilisation; mineralogy; geochemistry

Topical Collection Information

Dear Colleagues,

Minerals are very significant components of coal, from both academic and practical perspectives. The minerals and associated non-mineral inorganic elements may give rise to deleterious effects during coal preparation and utilization, such as stickiness and abrasion during preparation and ash deposition issues, corrosion, erosion and release of volatile pollutants, such as mercury and sulphur dioxide during combustion. Minerals in coal, in some cases, may be major carriers of critical elements, such as Ga and rare earth elements, or important base metals, such as Al, and such coals or their combustion products have potential as sources of those elements for industrial use.

From the genetic point of view, the minerals and non-mineral inorganic elements in coal are products of the processes associated with peat accumulation and rank advance, as well as, possibly, a range of epigenetic processes, and thus can provide information on the depositional conditions and geologic history of coal beds, coal-bearing sequences, and regional tectonic evolution. This Topical Collection on “Minerals in Coal and Coal Combustion Products” focuses on providing an up-to-date series of papers covering research and technological developments in the nature, origin, and significance of the minerals in coal, the transformations in the mineral matter during coal combustion, and the mineralogy of products derived from coal combustion processes.

Prof. Dr. Shifeng Dai
Dr. David French
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • minerals
  • coal
  • coal combustion products
  • non-mineral inorganic elements
  • trace elements

Related Special Issues

Published Papers (19 papers)

2020

Jump to: 2019, 2018

Open AccessArticle
Origin of a Petrographic Coal Structure and Its Implication for Coalbed Methane Evaluation
Minerals 2020, 10(6), 543; https://doi.org/10.3390/min10060543 - 16 Jun 2020
Abstract
A petrographic coal structure of Late Permian coals from the Liupanshui coalfield, Western Guizhou, SW China, has been distinguished for its novel macro-lithological characteristics. Petrographic, mineralogical and geochemical studies have been conducted for a typical coal sample (No.3 coal, Songhe coalmine, Panzhou County, [...] Read more.
A petrographic coal structure of Late Permian coals from the Liupanshui coalfield, Western Guizhou, SW China, has been distinguished for its novel macro-lithological characteristics. Petrographic, mineralogical and geochemical studies have been conducted for a typical coal sample (No.3 coal, Songhe coalmine, Panzhou County, China) and its geological genesis and significance for coalbed methane (CBM) evaluation is accordingly discussed. It was found that coal is characterized by a banded structure with intensively fractured vitrain sublayers, where a great number of fractures were developed and filled with massive inorganic matter. The study of coal quality, coal petrography, mineralogy and lanthanides and yttrium (REY) geochemistry of the infilling mineral matter (IMM) indicates that this fractured coal structure resulted from the tissues of coal-forming plants or coal matrix shrinkage, as well as the precipitation of calcium rich groundwater and the addition of terrigenous materials. The coal depositional environment and coal-forming plant are considered to have played a role in inducing the special fractures. This provides a scientific reference for the study of CBM for coal with this fractured structure, such as the Late Permian coal from the western border of Guizhou Province, SW China. Full article
Show Figures

Figure 1

Open AccessArticle
Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China
Minerals 2020, 10(6), 521; https://doi.org/10.3390/min10060521 - 05 Jun 2020
Abstract
Lithium (Li) is an important strategic resource, and with the increasing demand for Li, there are some limitations in the exploitation and utilization of conventional deposits such as the pegmatite-type and brine-type Li deposits. Therefore, it has become imperative to search for Li [...] Read more.
Lithium (Li) is an important strategic resource, and with the increasing demand for Li, there are some limitations in the exploitation and utilization of conventional deposits such as the pegmatite-type and brine-type Li deposits. Therefore, it has become imperative to search for Li from other sources. Li in coal is thought to be one of the candidates. In this study, the petrology, mineralogy, and geochemistry of No. 21 coal from the Hebi No. 6 mine, Anhe Coalfield, China, was reported, with an emphasis on the distribution, modes of occurrence, and origin of Li. The results show that Li is enriched in the No. 21 coal, and its concentration coefficient (CC) value is 6.6 on average in comparison with common world coals. Lithium in the studied coal is mainly present in aluminosilicates, mainly clay minerals, some of which contain a significant amount of Ti. The Li enrichment in the No. 21 coal is mainly controlled by the terrigenous materials and sourced from the moyite of the Yinshan Upland. Furthermore, Li in the No. 21 coal is more enriched in coals formed in acidic and humid conditions and coals influenced by fresh water during peat accumulation. Full article
Show Figures

Figure 1

Open AccessArticle
Comparison of Geochemical and Mineralogical Characteristics of Palaeogene Oil Shales and Coals from the Huangxian Basin, Shandong Province, East China
Minerals 2020, 10(6), 496; https://doi.org/10.3390/min10060496 - 29 May 2020
Abstract
Coal and oil shale are both organic matter-rich sedimentary rocks. However, their sources of organic matter and their depositional environments are different. The present study focuses on the Palaeogene Lijiaya Formation sequence in the Huangxian Basin, Shandong Province, East China, which has oil [...] Read more.
Coal and oil shale are both organic matter-rich sedimentary rocks. However, their sources of organic matter and their depositional environments are different. The present study focuses on the Palaeogene Lijiaya Formation sequence in the Huangxian Basin, Shandong Province, East China, which has oil shales showing marine geochemical indicators overlain by coals indicating marine regression. We investigated the C1 coal seam and underlying OS2 oil shale layers, compared their geochemical and mineralogical characteristics, clarified the details of their constituents, in order to elucidate the features of their sources, their depositional environments, and the post depositional processes in the context of the geological evolution of the basin. The Al2O3/TiO2 (18.1–64.9) and TiO2/Zr ratios (28.2–66.5) in the C1 coals and OS2 oil shales, respectively, suggest a felsic to intermediate source, and the Mesozoic granite on the South of Huangxian Fault may be one of the provenances of these sediments. The low sulphur content (0.53–0.59%) and low Sr/Ba ratios (0.32–0.67) suggest a freshwater depositional environment for the C1 coals. In contrast, the higher total sulphur contents (0.60–1.44%), the higher Sr/Ba ratios (0.31–1.11%), and the occurrence of calcareous shells, indicate seawater intrusions during deposition of the oil shales. The V/Ni, V/(V + Ni), and V/Cr ratios of the OS2 oil shale suggest oxic to suboxic conditions with a distinct change in palaeo-redox between the lower and upper parts of OS2 seam. The high boron contents in C1 coals (average, 504 ppm) is related to the high content of analcime (with the correlation coefficient of 0.96), and the high concentration of boron was attributed to a secondary enrichment by epigenetic hydrothermal solutions. The occurrence of idiomorphic-authigenic albite in association with analcime and quartz in veins in the coals suggests that albite is a product of a reaction between analcime and silica, both of volcanic origin. The reaction takes place at about 190 °C, indicating that the area was affected by hydrothermal fluids. Full article
Show Figures

Figure 1

Open AccessArticle
Greenockite Whiskers from the Bytom Burned Coal Dump, Upper Silesia, Poland
Minerals 2020, 10(5), 470; https://doi.org/10.3390/min10050470 - 22 May 2020
Abstract
Orange greenockite (CdS) aggregates were found in a small fumarole at a burned coal dump near Bytom, Upper Silesia, Poland and were studied using a variety of techniques in order to determine their chemistry, morphology, and most importantly, the mechanism of crystal growth. [...] Read more.
Orange greenockite (CdS) aggregates were found in a small fumarole at a burned coal dump near Bytom, Upper Silesia, Poland and were studied using a variety of techniques in order to determine their chemistry, morphology, and most importantly, the mechanism of crystal growth. Greenockite rods, wires, and whiskers with bismuth drops on crystal tops are predominant in these aggregates. Greenockite rods oriented sub-perpendicular to the substrate surface. The rod thickness reaches 5–6 μm and about 10 μm in length. The catalyst bismuth drop has a diameter comparable to the rod thickness. Fiber forms (wires and whiskers) are sub-parallel to the substrate surface. The thickness of these forms is usually less than 2 μm, and the length can be close to 1 mm. The bismuth drop diameter can show a large excess over the fiber thickness. Catalyst drops on the tops of whiskers began to change their form dynamically and exploded, spraying bismuth under the electron beam effect. Rods grow along the [01–10] direction, and whiskers and wires (axial forms) along the [0001] direction. Greenockite rod crystals, carrying on top a relatively homogenous bismuth catalyst drop, were formed on the heated substrate according to the VLS (vapor–liquid–solid) mechanism at temperatures not lower than 270 °C. Greenockite whiskers and wires grew just above of the substrate surface according to the VQS (vapor–quasiliquid–solid) mechanism at temperatures lower than 200 °C. These mechanisms of growth have very rarely been recorded to occur in nature and even less so in burning coal dumps. The cooperative growth effects of the fiber greenockite crystals were also described. Full article
Show Figures

Graphical abstract

Open AccessArticle
Spatial Macroscale Variability of the Role of Mineral Matter in Concentrating Some Trace Elements in Bituminous Coal in a Coal Basin—A Case Study from the Upper Silesian Coal Basin in Poland
Minerals 2020, 10(5), 422; https://doi.org/10.3390/min10050422 - 09 May 2020
Abstract
As there are numerous claims that the mode of occurrence of trace elements in coal influences the quality of the substrates as well as the course and results of the coal preparation processes, it is necessary to analyse the differences in the mode [...] Read more.
As there are numerous claims that the mode of occurrence of trace elements in coal influences the quality of the substrates as well as the course and results of the coal preparation processes, it is necessary to analyse the differences in the mode of occurrence of the elements in coal within a coal basin or a coal deposit. With the use of concentration distribution functions and the Pearson correlation coefficient, it was concluded that (1) mineral matter plays a significant and nearly constant or constant role in concentrating V, Cr, Co, As, Rb, Sr, Ba, and Pb in coal; (2) organic matter plays a stable role in concentrating Sn; and (3) there are significant differences in the role of organic and mineral matter in concentrating Mn, Ni, Cu, Zn, Mo, Cd, and Sb in coal throughout the USCB (Upper Silesian Coal Basin). Moreover, there was observed a difference in the mode of occurrence of Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, and Sb in coal in the vertical profile of the USCB. At the same time, there were observed no differences and a stable significant role of mineral matter in concentrating V, As, Rb, Sr, Ba, and Pb in coal, while the role of the petrographic groups of the coal components in concentrating the elements in raw coal was differentiated. It is believed that the difference in the mode of occurrence of the trace elements in coal within coal seams and coal deposits is a geochemical regularity. Full article
Show Figures

Figure 1

Open AccessArticle
Modes of Occurrence and Origin of Minerals in Permian Coals from the Huainan Coalfield, Anhui, China
Minerals 2020, 10(5), 399; https://doi.org/10.3390/min10050399 - 29 Apr 2020
Abstract
Minerals in coal provide useful information for not only paleo-environments of peat accumulation, but also for geological evolution during later diagenesis and/or epigenesis. This paper reports new data on coal quality and the mineralogical and geochemical compositions of 17 unaltered (by intrusion) coal [...] Read more.
Minerals in coal provide useful information for not only paleo-environments of peat accumulation, but also for geological evolution during later diagenesis and/or epigenesis. This paper reports new data on coal quality and the mineralogical and geochemical compositions of 17 unaltered (by intrusion) coal samples collected from the Huainan coalfield, providing new insight into the origins and modes of occurrence of the minerals in coal and their geological evolution. The results showed that the studied coal samples were low rank bituminous coal, with low ash yield (11.92–38.31%, average 24.80%) and high volatile content (25.13–43.43%, average 37.29%). Minerals in the coal mainly included kaolinite and quartz; varying proportions of calcite, siderite, ankerite, and pyrite; and traces of chlorite, zircon, strontianite, apatite, and gorceixite. Typical modes of mineral occurrence could be used to determine the formation stage of minerals. The detrital mineral, occurring as sub-angular to rounded discrete fragments or thin layers intimately admixed with organic matter at particular horizons, was of terrigenous origin, deposited during peat accumulation. Cell infillings, as well as nodule siderites and polycrystalline aggregates of pyrite, precipitated during the syngenetic to early diagenetic stages. Cleat infillings, compressed cell infillings, and fracture infillings precipitated in the epigenetic stage. However, the stage of mineral formation of the pore infilling was difficult to determine. Combined with coal quality, mineralogy, and geochemical analysis, the sedimentary environment of Shanxi Formation was affected by seawater, and Fe-rich hydrothermal fluids filled into the No. 3 coal seam in the epigenetic stage. The sedimentary environment of the No. 8 coal seam had widespread reduction and acid conditions due to basin subsidence, and sulfate-rich hydrothermal fluids may have been formed during the peat deposition stage. In contrast, the peat accumulation environment of the Upper Shihezi Formation was oxidized with a low pH condition. Alkaline fluid then flowed into the No. 13-1 coal seam in the epigenetic stage. Full article
Show Figures

Figure 1

Open AccessArticle
Towards Consistent Interpretations of Coal Geochemistry Data on Whole-Coal versus Ash Bases through Machine Learning
Minerals 2020, 10(4), 328; https://doi.org/10.3390/min10040328 - 07 Apr 2020
Abstract
Coal geochemistry compositional data on whole-coal basis can be converted back to ash basis based on samples’ loss on ignition. However, the correlation between the concentrations of elements reported on whole-coal versus ash bases in many cases is inconsistent. Traditional statistical methods (e.g., [...] Read more.
Coal geochemistry compositional data on whole-coal basis can be converted back to ash basis based on samples’ loss on ignition. However, the correlation between the concentrations of elements reported on whole-coal versus ash bases in many cases is inconsistent. Traditional statistical methods (e.g., correlation analysis) for compositional data on both bases may sometimes result in misleading results. To address this issue, we hereby propose an improved additive log-ratio data transformation method for analyzing the correlation between element concentrations reported on whole-coal versus ash bases. To verify the validity of the method proposed in this study, a data set which contains comprehensive analyses of 106 Late Paleozoic coal samples from the Datanhao mine and Adaohai Mine, Inner Mongolia, China, is used for the validity testing. A prediction model was built for performance evaluation of two methods based on the hierarchical clustering algorithm. The results show that the improved additive log-ratio is more effective in prediction for occurrence modes of elements in coal than the previously reported stability method, and therefore can be adopted for consistent interpretations of coal geochemistry compositional data on whole-coal vs. ash bases. Full article
Show Figures

Figure 1

Open AccessArticle
Mineralogical and Chemical Characteristics of Coal Ashes from Two High-Sulfur Coal-Fired Power Plants in Wuhai, Inner Mongolia, China
Minerals 2020, 10(4), 323; https://doi.org/10.3390/min10040323 - 04 Apr 2020
Abstract
The mineralogical and chemical characteristics of the feed coals and coal combustion products (CCPs) from two power plants (Xilaifeng and Damo) that consume coals from the Wuda Coalfield, Inner Mongolia, were investigated, using XRD, SEM–EDS, XRF, and ICP-MS. The feed coals from Xilaifeng [...] Read more.
The mineralogical and chemical characteristics of the feed coals and coal combustion products (CCPs) from two power plants (Xilaifeng and Damo) that consume coals from the Wuda Coalfield, Inner Mongolia, were investigated, using XRD, SEM–EDS, XRF, and ICP-MS. The feed coals from Xilaifeng and Damo are both of high ash yield (52.93% and 48.36%, respectively), and medium and high total sulfur content (2.22% and 3.32%, respectively). The minerals in the feed coals are primarily composed of kaolinite, quartz, illite, pyrite, and, to a lesser extent, gypsum and anatase. In addition to the elevated incompatible elements (Nb, Ta, Zr, Hf and Th), Li and Hg are enriched in the feed coals from the Xilaifeng and Damo power plants, respectively. Rare earth elements and yttrium (REY) are more enriched in the feed coals from Xilaifeng (194 μg/g) than those of Damo (93.9 μg/g). The inorganic phases of CCPs from both power plants are mainly composed of amorphous phase, quartz, hematite, illite, and anhydrite. Compared with the feed coals, concentrations of most trace elements in the CCPs are elevated, and they are preferentially enriched in the fly ashes relative to the bottom ashes (*f/b > 1), especially F, As, Sr, Mo, Se, and Hg (*f/b > 2.5). Furthermore, most trace elements (Xilaifeng: excluding Li, Cr, Co, Ni, Rb, Nb and Cs; Damo: excluding Li, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Cs and Ba) are more enriched in the (fine) fly ashes relative to the laboratory high-temperature coal ashes (HTAs). The REY barely differentiate in either the fly ash or bottom ash from Xilaifeng. In contrast, the REY in the fine and coarse fly ashes from Damo have very similar H-type distribution patterns with negative Ce and slightly positive Y anomalies. Attention should be paid to the enriched toxic elements (including F, As and Hg) in the fly ashes from both power plants due to possible adverse environmental effect. Full article
Show Figures

Figure 1

Open AccessArticle
Geological Controls on Mineralogy and Geochemistry of the Permian and Jurassic Coals in the Shanbei Coalfield, Shaanxi Province, North China
Minerals 2020, 10(2), 138; https://doi.org/10.3390/min10020138 - 06 Feb 2020
Abstract
Coal as the source of critical elements has attracted much attention and the enrichment mechanisms are of significant importance. This paper has an opportunity to investigate the mineralogical and geochemical characteristics of the Permian and Jurassic bituminous coals and associated non-coals from two [...] Read more.
Coal as the source of critical elements has attracted much attention and the enrichment mechanisms are of significant importance. This paper has an opportunity to investigate the mineralogical and geochemical characteristics of the Permian and Jurassic bituminous coals and associated non-coals from two underground coal mines in the Shanbei Coalfield (Northeast Ordos basin), Shaanxi Province, North China, based on the analysis of X-ray diffraction (XRD), inductively coupled plasma atomic-emission spectrometry (ICP-AES/MS), and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS). The Jurassic and Permian coals have similar chemical features excluding ash yield, which is significantly higher in the Permian coals. Major mineral matters in the Jurassic coals are quartz, kaolinite, and calcite. By contrast, mineral assemblages of the Permian coals are dominated by kaolinite; and apatite occurring in the middle section’s partings. The Jurassic coals are only enriched in B, whereas the Permian coals are enriched in some trace elements (e.g., Nb, Ta, Th, and REY). Boron has a mixed inorganic and organic association which may be absorbed by organic matter from fluid (or groundwater) or inherited from coal-forming plants. Additionally, climatic variation also plays an important role. As for the Permian coals, kaolinite and apatite as the major carriers of elevated elements; the former were derived from the sedimentary source region (the Yinshan Oldland and the Benxi formation) and later precipitated from Ca-, and P-rich solutions. We deduced that those elevated elements may be controlled by the source rock and diagenetic fluid input. The findings of this work offered new data to figure out the mechanism of trace element enrichment of coal in the Ordos basin. Full article
Show Figures

Figure 1

2019

Jump to: 2020, 2018

Open AccessArticle
Mineralogy and Geochemistry of Late Permian Coals within the Tongzi Coalfield in Guizhou Province, Southwest China
Minerals 2020, 10(1), 44; https://doi.org/10.3390/min10010044 - 31 Dec 2019
Cited by 1
Abstract
The lowermost Late Permian coal seam (C4 Coal) in the Tongzi Coalfield offers an opportunity to investigate the influence of terrigenous detrital materials from the Qianbei Upland on the mineralogical and geochemical patterns of the C4 Coal. The minerals are mainly dominated by [...] Read more.
The lowermost Late Permian coal seam (C4 Coal) in the Tongzi Coalfield offers an opportunity to investigate the influence of terrigenous detrital materials from the Qianbei Upland on the mineralogical and geochemical patterns of the C4 Coal. The minerals are mainly dominated by pyrite and, to a lesser extent, tobelite, kaolinite, and calcite, along with traces of Al-oxyhydroxide minerals. The various degrees of marine influence may have resulted in the variation in the amount of Fe-sulfides (e.g., pyrite) and elements having Fe-sulfides affinity. Furthermore, the abundant Fe ions involved in the formation of Fe-sulfides were most likely derived from the claystone on the Qianbei Upland. The tobelite identified in the C4 Coal probably originated from the interaction between pre-existing kaolinite and NH4+ from NH3 released from the thermally affected organic matter at least shortly after the highly volatile bituminous stage under NH4+-rich and K+-poor conditions. The terrigenous detrital materials were derived from two possible sediment-region sources—the Qianbei Upland and Kangdian Upland—which is different from Late Permian coals in Western Guizhou Province. The claystone on the Qianbei Upland may have served as parent rock, as indicated by the presence of the Al-oxyhydroxide minerals as well as low SiO2/Al2O3 ratio (0.66 on average) and low quartz content. Meanwhile, the detrital materials from the Kangdian Upland most likely originated from the erosion of the felsic rocks at the uppermost part of the Kangdian Upland, as evidenced by the high Al2O3/TiO2 ratio (36.0 on average) and the strongly negative Eu anomaly (0.61 on average). Full article
Show Figures

Figure 1

Open AccessArticle
Calcium-Bearing Minerals Transformation during Underground Coal Gasification
Minerals 2019, 9(11), 708; https://doi.org/10.3390/min9110708 - 15 Nov 2019
Abstract
Calcium-bearing minerals are one of the main typical minerals in coal and coal ash. In the process of coal thermal conversion, calcium-bearing minerals undergo different morphological transformation in which the reaction temperature, pressure, and atmosphere are important factors affecting their transformation. The reaction [...] Read more.
Calcium-bearing minerals are one of the main typical minerals in coal and coal ash. In the process of coal thermal conversion, calcium-bearing minerals undergo different morphological transformation in which the reaction temperature, pressure, and atmosphere are important factors affecting their transformation. The reaction process of underground coal gasification (UCG) could be clearly divided into pyrolysis, reduction, and oxidation and the typical calcium-bearing minerals are expected to indicate the actual reaction conditions of UCG. A high-calcium coal, Zhundong coal, was used in this research. The products of UCG were prepared and the minerals were identified by X-ray diffraction (XRD) and a scanning electron microscope coupled with an energy-dispersive spectrometer (SEM-EDS). The thermodynamic calculation was used to assist in understanding the transformation behaviors of calcium-bearing minerals. The experimental results show that the calcium-bearing mineral is gradually converted from gypsum (CaSO4·2H2O) in the raw coal into anhydrite (CaSO4) during the pyrolysis process. In the reduction stage, anhydrite reacts with the reducing gas (CO) to produce oldhamite (CaS), and the oldhamite is stably present in the reduction ash. During the oxidation process, oldhamite is first transformed into CaSO4, and then CaSO4 is converted into CaO. Finally, CaO reacts with Al2O3 and SiO2 to produce gehlenite (Ca2Al2SiO7) at 1100 °C. As the oxidation temperature rises to 1400 °C, gehlenite is transformed into the thermodynamically stable anorthite (CaAl2Si2O8). With the further progress of the reaction, anorthite will co-melt with iron-bearing minerals above 1500 °C. The ternary phase diagram of SiO2–Al2O3–CaO system proves that anorthite and gehlenite are the typical high-temperature calcium-bearing minerals when the mole fraction of SiO2 is higher than 0.6. Moreover, the gehlenite is converted to anorthite with the temperature rise, which is consistent with experimental results. This study provides a scientific basis for understanding the UCG reaction conditions. Full article
Show Figures

Graphical abstract

Open AccessArticle
Mineralogical and Environmental Geochemistry of Coal Combustion Products from Shenhuo and Yihua Power Plants in Xinjiang Autonomous Region, Northwest China
Minerals 2019, 9(8), 496; https://doi.org/10.3390/min9080496 - 19 Aug 2019
Cited by 1
Abstract
The mineralogical and geochemical characteristics of feed coals and coal combustion products (CCPs) from the Shenhuo and Yihua Power Plants in Xinjiang Autonomous Region, were studied by means of proximate analysis, Power X-ray diffraction (XRD), scanning electron microscopy with Energy Dispersive X-ray analyzer [...] Read more.
The mineralogical and geochemical characteristics of feed coals and coal combustion products (CCPs) from the Shenhuo and Yihua Power Plants in Xinjiang Autonomous Region, were studied by means of proximate analysis, Power X-ray diffraction (XRD), scanning electron microscopy with Energy Dispersive X-ray analyzer (SEM-EDX), inductively coupled plasma atomic emission spectrometry (ICP-MS) and inductively coupled plasma mass spectrometry (ICP-AES). The environmental geochemistry of CCPs was evaluated by Al-normalized enrichment factor as well as European Standard EN-12457 leaching test. Two feed coals have the characteristics of low sulfur content, medium to high volatiles matter yields, medium moisture content, super low to medium ash yield, medium to high calorific value and low mineral content. The main crystalline facies in fly ash and slag are quartz and mullite, with a small amount of calcite, and some unburned carbon. Hematite, SrSO4 and barite also can be observed in fly ashes by SEM. Typical plerophere occurs in fine fly ash rather than the coarse fly ash. The concentration of most trace elements in CCPs falls within the lower concentration range of European fly ashes. With respect to the partitioning behavior of trace elements during coal combustion, S is highly volatile, and Mg, Na, Zn, B, Co, As, Nb, Zr, Cu and K also show certain volatility, which may to some extent emit to the atmosphere. Furthermore, leaching experiments show that leachable concentrations of most of the potentially toxic elements in CCPs are low, and the CCPs fall in the range between inert and nonhazardous landfill material regulated by the 2003/33/EC Decision. Full article
Show Figures

Figure 1

Open AccessArticle
Mineralogy and Geochemistry of the No. 5−2 High-Sulfur Coal from the Dongpo Mine, Weibei Coalfield, Shaanxi, North China, with Emphasis on Anomalies of Gallium and Lithium
Minerals 2019, 9(7), 402; https://doi.org/10.3390/min9070402 - 30 Jun 2019
Cited by 3
Abstract
This paper reports the mineral compositions and geochemical characteristics of the No. 5−2 high-sulfur coal (Taiyuan Formation) from Dongpo Mine, Weibei Coalfield, Shaanxi, Northern China via transmitted and reflected light microscopy, scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDS), X-ray [...] Read more.
This paper reports the mineral compositions and geochemical characteristics of the No. 5−2 high-sulfur coal (Taiyuan Formation) from Dongpo Mine, Weibei Coalfield, Shaanxi, Northern China via transmitted and reflected light microscopy, scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDS), X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence spectrometry (XRF). We also confirmed the input of intermediate-felsic volcanic ashes into the Taiyuan Formation coals in Dongpo Mine, Weibei Coalfield. The results show that Dongpo coals are enriched in Ga and Li compared to the average values for world hard coals, and they are depleted in Al2O3 compared to Chinese coals. The coal low temperature ash contains kaolinite, illite, quartz, calcite, pyrite, and to a lesser extent, chlorite, plagioclase, dolomite, ankerite, and apatite. The concentration anomalies of Ga and Li in No. 5−2 high-sulfur coal were not caused by the Benxi Formation Bauxite, but by the influence of multiple geological factors. The Middle Proterozoic moyite from the Yinshan Oldland led to the slightly higher Ga and Li contents of the No. 5−2 coal than those in world hard coals. Input of synchronization volcanic ash, injection of hydrothermal fluids during the syngenetic or early diagenetic stages and influence of seawater further contributed to the Ga and Li enrichment of the No. 5−2 coal. Full article
Show Figures

Figure 1

Open AccessArticle
Structural Characterizations of Aluminosilicates in Two Types of Fly Ash Samples from Shanxi Province, North China
Minerals 2019, 9(6), 358; https://doi.org/10.3390/min9060358 - 12 Jun 2019
Cited by 5
Abstract
In order to determine the structural characterization of aluminosilicates in two types of fly ashes, two samples from Shanxi Province, China were selected for study. One was from a pulverized coal boiler (FA-1), and the other from a circulating fluidized bed boiler (FA-2). [...] Read more.
In order to determine the structural characterization of aluminosilicates in two types of fly ashes, two samples from Shanxi Province, China were selected for study. One was from a pulverized coal boiler (FA-1), and the other from a circulating fluidized bed boiler (FA-2). FA-1 had a much higher content of silicon dioxide (SiO2) (70.30%) than FA-2(42.19%), but aluminum oxide (Al2O3) was higher in FA-2 (25.41%) than in FA-1 (17.04%). The characterizations were investigated using various methods including X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), magic angle spinning nuclear magnetic resonance (MAS–NMR) spectrometry, and X-ray photoelectron spectroscopy (XPS). The XRD analysis showed that FA-1 contained aluminosilicate glass, quartz and mullite, while FA-2 contained significant amounts of amorphous aluminosilicate, quartz and gypsum. The FTIR results showed an increased substitution of Al3+ for Si4+ as the band of asymmetric stretching vibrations Si–O(Si) (1100 cm−1) moved to 1090 cm−1 for FA-2, much lower than for FA-1(1097 cm−1). Moreover, the sharpness of the bands in the 1250–1000 cm−1 region for FA-2 indicates that the silicate structure of FA-2 was more ordered than for FA-1. It can be understood from the 29Si MAS–NMR results that Q4(mAl) (Q4 are connected via 4 bridging O atoms to mAl) is the main structural type in FA-1 and FA-2, and that FA-2 contains more Al, which substitutes for Si in the Q4 structure. 27Al MAS–NMR demonstrated that a combination of tetrahedral, pentahedral, and octahedral Al existed in FA-1 and FA-2. The Si 2p XPS spectra suggested that there were three forms of Si, including bridging Si (Si–O2), non–bridging Si (Si–O), and SiO2 gel. The content of Si–O2 for FA-1 was 37.48% higher than Si–O (28.57%), while the content of Si–O2 was 30.21% lower than Si–O (40.15%) for FA-2. The Al 2p XPS spectra showed that octahedral Al was the dominant form for FA-1 with a content of 40.25%, while the main phase was tetrahedral Al for FA-2 with a proportion of 37.36%, which corresponds well with the 27Al MAS–NMR results. Full article
Show Figures

Figure 1

Open AccessArticle
The Role of Mineral Matter in Concentrating Uranium and Thorium in Coal and Combustion Residues from Power Plants in Poland
Minerals 2019, 9(5), 312; https://doi.org/10.3390/min9050312 - 20 May 2019
Cited by 3
Abstract
Based on the results of tests on feed coal from the Lublin Coal and Upper Silesian Coal Basin and its fly ash and slag carried out using X-ray diffraction and X-ray fluorescence analysis, atomic emission spectroscopy, and scanning electron microscopy, it was found [...] Read more.
Based on the results of tests on feed coal from the Lublin Coal and Upper Silesian Coal Basin and its fly ash and slag carried out using X-ray diffraction and X-ray fluorescence analysis, atomic emission spectroscopy, and scanning electron microscopy, it was found that in feeds, coal Th is associated with phosphates and U with mineral matter. The highest Th content was found in anhedral grains of monazite and in Al-Si porous particles of fly ash of <0.05 mm size; whereas in the slag, Th is concentrated in the massive Al-Si grains and in ferrospheres. U is mainly concentrated in the Al-Si surface of porous grains, which form a part of fly ash of <0.05 mm size. In the slag, U is to be found in the Al-Si massive grains or in a dispersed form in non-magnetic and magnetic grains. Groups of mineral phase particles have been identified that have the greatest impact on the content of Th and U in whole fly ash and slag. The research results contained in this article may be important for predicting the efficiency of Th and U leaching from furnace waste storage sites and from falling dusts to soils and waters. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Threshold Value Determination Using Machine Learning Algorithms for Ba Interference with Eu in Coal and Coal Combustion Products by ICP-MS
by Na Xu and Qing Li
Minerals 2019, 9(5), 259; https://doi.org/10.3390/min9050259 - 29 Apr 2019
Cited by 2
Abstract
Ba-based ion interference with Eu in coal and coal combustion products during quadrupole-based inductively coupled plasma mass spectrometry procedures is problematic. Thus, this paper proposes machine-learning-based prediction models for determination of the threshold value of Ba interference with Eu, which can be used [...] Read more.
Ba-based ion interference with Eu in coal and coal combustion products during quadrupole-based inductively coupled plasma mass spectrometry procedures is problematic. Thus, this paper proposes machine-learning-based prediction models for determination of the threshold value of Ba interference with Eu, which can be used to predict such interference in coal. The models are trained for Eu, Ba, Ba/Eu, and Ba interference with Eu. Under different user-defined parameters, different prediction models based on the corresponding model tree can be applied to Ba interference with Eu. We experimentally show the effectiveness of these different prediction models and find that, when the Ba/Eu value is less than 2950, the Ba-Eu interference prediction model is y = 0.18419411 + 0.00050737 × x ,   0 < x < 2950 . Further, when the Ba/Eu value is between 2950 and 189,523, the Ba-Eu interference prediction model of y   =   0.293982186   +   0.00000181729975   ×   x ,   2950   <   x   <   189 , 523 yields the best result. Based on the optimal model, a threshold value of 363 is proposed; i.e., when the Ba/Eu value is less than 363, Ba interference with Eu can be neglected during Eu data interpretation. Comparison of this threshold value with a value proposed in earlier works reveals that the proposed prediction model better determines the threshold value for Ba interference with Eu. Full article
Show Figures

Figure 1

Open AccessCommunication
Nano-Scale Rare Earth Distribution in Fly Ash Derived from the Combustion of the Fire Clay Coal, Kentucky
Minerals 2019, 9(4), 206; https://doi.org/10.3390/min9040206 - 30 Mar 2019
Cited by 6
Abstract
Fly ash from the combustion of eastern Kentucky Fire Clay coal in a southeastern United States pulverized-coal power plant was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). TEM combined with elemental analysis via energy [...] Read more.
Fly ash from the combustion of eastern Kentucky Fire Clay coal in a southeastern United States pulverized-coal power plant was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). TEM combined with elemental analysis via energy dispersive X-ray spectroscopy (EDS) showed that rare earth elements (REE; specifically, La, Ce, Nd, Pr, and Sm) were distributed within glassy particles. In certain cases, the REE were accompanied by phosphorous, suggesting a monazite or similar mineral form. However, the electron diffraction patterns of apparent phosphate minerals were not definitive, and P-lean regions of the glass consisted of amorphous phases. Therefore, the distribution of the REE in the fly ash seemed to be in the form of TEM-visible nano-scale crystalline minerals, with additional distributions corresponding to overlapping ultra-fine minerals and even true atomic dispersion within the fly ash glass. Full article
Show Figures

Figure 1

Open AccessArticle
Geochemical and Mineralogical Characteristics of the Middle Jurassic Coals from the Tongjialiang Mine in the Northern Datong Coalfield, Shanxi Province, China
Minerals 2019, 9(3), 184; https://doi.org/10.3390/min9030184 - 16 Mar 2019
Cited by 1
Abstract
There is limited information available on the minerals and elements present in the Jurassic coals from Datong Coalfield. This paper investigates the geochemical and mineralogical characteristics of the Middle Jurassic coals from the Tongjialiang Mine using X-ray powder diffraction (XRD), X-ray fluorescence spectrometry [...] Read more.
There is limited information available on the minerals and elements present in the Jurassic coals from Datong Coalfield. This paper investigates the geochemical and mineralogical characteristics of the Middle Jurassic coals from the Tongjialiang Mine using X-ray powder diffraction (XRD), X-ray fluorescence spectrometry (XRF), inductively coupled plasma mass spectrometry (ICP-MS), and scanning electron microscopy in combination with energy-dispersive X-ray spectrometry (SEM-EDS). No.12 coal is a low-medium volatile bituminous coal and is characterized by low ash yield content, low moisture content, and ultra-low sulfur content. Compared with Chinese coals, the Tongjialiang coals have slightly higher average percentages of MgO and P2O5, and lower average percentages of the other major oxides, including SiO2, TiO2, Al2O3, Fe2O3, CaO, MnO, Na2O, and K2O. Compared with the World hard coals, Be, Cr, Co, Ni, Ge, Sn, Ta, and W are slightly enriched in the Tongjialiang coals. The concentrations of Li, F, Sc, V, Cu, Ga, Se, Sr, Zr, Nb, Hf, Pb, Th, and U are close to the average values of the world’s hard coals. The minerals in No.12 coal mainly include quartz, kaolinite, siderite, and ankerite, along with smaller amounts of pyrite, illite, calcite, and rutile. The formation of syngenetic siderite in No.12 coal is related to the weathering of biotite in the gneiss of the Yinshan Upland. The modes of occurrence of ankerite indicate that the coals may be affected by the injection of low temperature hydrothermal fluids. It is noteworthy that a portion of epigenetic ankerite may be a product of metasomatism between syngenetic siderite and the epigenetic Fe-Mg-Ca rich hydrothermal fluids. The ratios of Al2O3/TiO2, REY (rare earth elements and yittrium) enrichment patterns, the modes of occurrence of siderite and ankerite, as well as the enriched lithophile and siderophile elements indicate that the No.12 coal may have originated from the Yinshan Upland and may also have been influenced by low temperature hydrothermal fluids that might have circulated in the coal basin. Full article
Show Figures

Figure 1

2018

Jump to: 2020, 2019

Open AccessArticle
Minerals and Enrichment of W, Rb, and Cs in Late Permian Coal from Meitian Mine, Meitian Coalfield, Southern China by Magmatic Hydrothermal Fluids
Minerals 2018, 8(11), 504; https://doi.org/10.3390/min8110504 - 05 Nov 2018
Cited by 1
Abstract
We report on the effects of magmatic hydrothermal fluids on the mineralogical and geochemical compositions of 12U and 12L Coals from the Meitian Mine in the Meitian Coalfield, southern China. The minerals in 12U Coal are predominantly chlorite, quartz, and calcite, while the [...] Read more.
We report on the effects of magmatic hydrothermal fluids on the mineralogical and geochemical compositions of 12U and 12L Coals from the Meitian Mine in the Meitian Coalfield, southern China. The minerals in 12U Coal are predominantly chlorite, quartz, and calcite, while the minerals in 12L Coal consist mainly of illite, quartz, chlorite, kaolinite, and mixed-layer illite/smectite (I/S). The vesicle- and fracture-filling illite, chlorite, I/S, pyrite, and fluorite, cleat- and fracture-filling carbonate minerals (i.e., calcite, and dolomite), and cleat-filling tremolite, diopside, and talc have epigenetic hydrothermal origins. Tremolite, diopside, and talc were probably formed from the reaction between dolomite and Si-rich magmatic hydrothermal fluids. Elevated Pb–Zn–Sn–Cd assemblages are characteristic for the 12U Coal, while 12L Coal is enriched in W, Rb, Cs, Th, V, Zn, and Zr, most notably W, Rb, and Cs. REY (Rare Earth Elements and Yttrium) plots for almost all coals, partings and host rocks are similar, showing an M-type REY distribution, Gd-maximum, positive Y anomalies, and negative Ce anomalies, suggesting acid hydrothermal circulation in the coal-bearing strata. Rubidium and cesium in the coal is clearly associated with K-rich clay minerals (illite + I/S), and to a lesser extent with silicate minerals that were precipitated from hydrothermal solutions. W in the coals mainly occurs in the inorganic constituents of illite and pyrite, especially illite. Enrichment of W, Rb, and Cs in the coal and host rocks is genetically associated with magmatic hydrothermal fluids. Specifically, magmatic hydrothermal fluids of relatively high temperatures that are rich in volatile matter can extract abundant W, Rb, and Cs from granitic melts. The enrichment of these rare metals in the coal is mainly related to illitization. Our study results suggest that, for coal intruded by magmatic rocks, the type of hydrothermal alteration may greatly influence the enrichment of elements. Full article
Show Figures

Figure 1

Back to TopTop