Spatial Macroscale Variability of the Role of Mineral Matter in Concentrating Some Trace Elements in Bituminous Coal in a Coal Basin—A Case Study from the Upper Silesian Coal Basin in Poland
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
- the arithmetic mean value of all the determined quality indices of the tested USCB coal and the average content of the oxides of the major elements in coal ash, which were compared with the average values of the coal indices of coal ranked from other deposits around the world (Table 1; see also Tables S1 and S2); and
- the average content of the elements in the coal, which were compared with hard coal Clarke values [38] (Table 1; see also Tables S1 and S2).
- applying the function of the distribution of concentrations developed by Marczak [51], described with the following equation:
- Through calculating the value of the Pearson correlation coefficient (r) for the dependence between the petrographic composition of coal, the content of the oxides of the main elements in coal ash, the content of sulphur in the coal and coal ash yield, and the content of the elements in the coal were determined. The coefficients of determination of the linear regression (R2) for the analysed dependencies were also determined. The linear regression model was verified with the F-Snedecor test with the level of confidence α = 0.05. The significance of the correlation coefficient r for the significance level of p < 0.05 was verified with a Student’s t-test. Interpreting the values of r and p, it was assumed that the values r ≥ 0.30 for p < 0.05 indicate the significance of the analysed correlation. The values r ≥ 0.30 for p = 0.05–0.10 only enable a conclusion that the conducted statistical analysis did not provide any proof that the correlation is significant. The results of the calculations are presented in Table 2 and Table 3 (see also Tables S6 and S7).
4. Results and Discussion
4.1. General Petrographical and Chemical Characteristics of Coal
4.2. Mode of Occurrence of Trace Elements in Coal
4.2.1. General Trends
4.2.2. Lateral Variability
4.2.3. Vertical Variability
4.2.4. Interpretation of Variability in the Mode of Occurrence of Elements in the Coal
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, L.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- YudovichYa, E.; Ketris, M.P. Toxic trace elements in coals. In Russian Acadamie of Sciences; Ural Division Komi Scientific Centre: Ekaterinburg, Russia, 2005; pp. 1–655. [Google Scholar]
- Spiro, B.F.; Liu, J.; Dai, S.; Zeng, R.; Large, D.; French, D. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. Int. J. Coal Geol. 2019, 215, 103304. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Li, W. Mineralogy, distribution, occurrence and removability of trace elements during the coal preparation of No. 6 coal from Heidaigou mine. Int. J. Coal Sci. Technol. 2014, 1, 402–420. [Google Scholar] [CrossRef] [Green Version]
- Diehl, S.F.; Goldhaber, M.B.; Hatch, J.R. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama. Int. J. Coal Geol. 2004, 59, 193–208. [Google Scholar] [CrossRef]
- Diehl, S.F.; Goldhaber, M.B.; Koenig, A.E.; Lowers, H.A.; Ruppert, L.F. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: Evidence for multiple episodes of pyrite formation. Int. J. Coal Geol. 2012, 94, 238–249. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Hower, J.C.; Cambel, J.L.; Teesdale, W.J.; Nejedly, Z.; Robertson, J.D. Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. Int. J. Coal Geol. 2008, 75, 88–92. [Google Scholar] [CrossRef]
- Jiang, Y.; Qian, H.; Zhou, G. Mineralogy and geochemistry of different morphological pyrite in Late Permian coals, South China. Arab. J. Geosci. 2016, 9, 590. [Google Scholar] [CrossRef]
- Kolker, A. Minor element distribution in iron disulfides in coal: A geochemical review. Int. J. Coal Geol. 2012, 94, 32–43. [Google Scholar] [CrossRef]
- Kolker, A.; Finkelman, R.B. Potentially hazardous elements in coal: Modes of occurrence and summary of concentration data for coal components. Int. J. Coal Prep. Util. 1998, 19, 133–157. [Google Scholar] [CrossRef]
- Parzentny, H.R.; Lewińska-Preis, L. The role of sulphide and carbonate minerals in the concentration of chalcophile elements in the bituminous coal seams of a paralic series (Upper Carboniferous) in the Upper Silesian Coal Basin (USCB), Poland. Chem. ErdeGeochem. 2006, 66, 227–247. [Google Scholar] [CrossRef]
- Wiese, R.G.; Muir, I.J.; Fyfe, W.S. Trace-element siting in iron sulphides in Ohio coals determined by secondary ion mass spectrometry (SIMS). Int. J. Coal Geol. 1990, 14, 155–174. [Google Scholar] [CrossRef]
- Bhangare, R.C.; Ajmal, P.Y.; Sahu, S.K.; Pandit, G.G.; Puranik, V.D. Distribution of trace elements in coal and combustion residues from five thermal power plants in India. Int. J. Coal Geol. 2011, 86, 349–356. [Google Scholar] [CrossRef]
- Dutta, M.; Islam, N.; Rabha, S.; Narzary, B.; Bordoloi, M.; Saikia, D.; Silva, L.F.O.; Saikia, B.K. Acid mine drainage in an Indian high-sulphur coal mining area: Cytotoxicity assay and remediation study. J. Hazard. Mat. 2019, 121851. [Google Scholar] [CrossRef]
- Finkelman, R.B. Potential health impacts of burning coal beds and waste banks. Int. J. Coal Geol. 2004, 59, 19–24. [Google Scholar] [CrossRef]
- Parzentny, H.R.; Róg, L. Distribution of heavy metals in fly ash originating from burning coal of Upper Silesian Coal Basin. PrzeglądGórniczy 2001, 57, 52–60. (In Polish) [Google Scholar]
- Parzentny, H.R.; Róg, L. Potentially hazardous trace elements in ash from combustion of coals in limnic series (Upper Carboniferous) of the Upper Silesian Coal Basin (USCB). GórnictwoiGeologia 2007, 2, 81–91. [Google Scholar]
- Widodo, S.; Oschmann, W.; Bechtel, A.; Sachsenhofer, R.F.; Anggayana, K.; Puettmann, W. Distribution of sulphur and pyrite in coal seams form Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions. Int. J. Coal Geol. 2010, 81, 151–162. [Google Scholar] [CrossRef]
- Xu, R.; Yan, R.; Zheng, C.; Qiao, Y. Status of trace element emission in a coal combustion process: A review. Fuel Process. Technol. 2003, 85, 215–237. [Google Scholar] [CrossRef]
- Mohanty, M.K.; Honaker, R.Q.; Mondal, K.; Paul, B.C.; Ho, K. Trace element reductions in fine coal using advanced physical cleaning. Coal. Prep. 1998, 19, 195–211. [Google Scholar] [CrossRef]
- Oliveira, M.L.S.; Ward, C.R.; Sampaio, C.H.; Querol, X.; Cutruneo, C.M.N.L. Partitioning of mineralogical and inorganic geochememical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes. Int. J. Coal Geol. 2013, 116–117, 75–92. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, C.-C.; Zhang, N.-N.; Liu, C.; Tang, M.-C.; Cao, S.-S. Arsenic in coal: Modes of occurrence and reduction via coal preparation—A case study. Int. J. Coal Prep. Util. 2018. [Google Scholar] [CrossRef]
- Zhou, C.-C.; Liu, C.; Zhang, N.; Cong, L.-F.; Pan, J.-H.; Peng, C.-B. Fluorine in coal: The modes of occurrence and its removability by froth flotation. Int. J. Coal Prep. Util. 2018, 38, 149–161. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Izquierdo, M.; Querol, X. Leaching behaviour of elements from coal combustion fly ash: An overview. Int. J. Coal Geol. 2012, 94, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A. Trace Elements of Soils and Plants, 4th ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2011; p. 534. [Google Scholar]
- Duffus, J.H. “Heavy metals”—A meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Yan, X.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; Finkelman, R.B. Valuable elements in Chinese coals: A review. J. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Hower, J.C.; Dai, S.; Seredin, V.V.; Zhao, L.; Kostova, I.J.; Silva, L.F.O.; Mardon, S.M.; Gurdal, G. A note on the occurrence of yttrium and rare earth elements in coal combustion products. Coal Comb. Gasific. Prod. 2013, 5, 39–47. [Google Scholar]
- Hower, J.C.; Qian, D.; Briot, N.J.; Henke, K.R.; Hood, M.M.; Taggart, R.K.; Hsu-Kim, H. Rare earth element associations in the Kentucky State University stoker ash. Int. J. Coal Geol. 2018, 189, 75–82. [Google Scholar] [CrossRef]
- Hower, J.C.; Groppo, J.G.; Joshi, P.; Preda, D.V.; Gamliel, D.P.; Mohler, D.T.; Wisema, J.D.; Hopps, S.D.; Morgan, T.D.; Beers, T.; et al. Distribution of Lanthanides, Yttrium, and Scandium in the Pilot-Scale Beneficiation of Fly Ashes Derived from Eastern Kentucky Coals. Minerals 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- King, J.F.; Taggart, R.K.; Smith, R.C.; Hower, J.C.; Hsu-Kim, H. Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. Int. J. Coal Geol. 2018, 195, 75–83. [Google Scholar] [CrossRef]
- Ketris, M.P.; YudovichYa, E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Swaine, D.J. Trace Elements in Coal; Butterworths: London, UK, 1990; pp. 1–278. [Google Scholar]
- Zhang, J.; Han, C.-L.; Xu, Y.-Q. The release of the hazardous elements from coal in the initial stage of combustion process. Fuel Proc. Technol. 2003, 84, 121–133. [Google Scholar] [CrossRef]
- Parzentny, H.R.; Róg, L. Evaluation the value of some petrographic, physico-chemical, and geochemical indicators of quality of coal in Paralic Series of the Upper Silesian Coal Basin and attempt to find a correlation between them. Gospod. Surowcami Miner. Miner. Resour. Manag. 2017, 33, 51–76. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Parzentny, H.R.; Róg, L. Modes of occurrence of ecotoxic elements in coal from the Upper Silesian Coal Basin, Poland. Arab. J. Geosci. 2018. [Google Scholar] [CrossRef]
- Kotas, A. Upper Silesian Coal Basin, Lithostratigraphy and sedimentologic-paleogeographic development. In: Zdanowski, A., Żakowa H. (Eds.), The Carboniferous system in Poland. Pap. Pol. Geol. Inst. 1995, 148, 124–134. [Google Scholar]
- Jurczak-Drabek, A. Petrographical Atlas of Coal Deposits Upper Silesian Coal Basin; Polish Geological Institute Publications: Warsaw, Poland, 1996. [Google Scholar]
- Jureczka, J.; Kotas, A. Upper Silesian Coal Basin, Coal deposits. In The Carboniferous System in Poland; Zdanowski, A., Żakowa, H., Eds.; Papers of the Polish Geological Institute: Warsaw, Poland, 1995; Volume 148, pp. 164–172. [Google Scholar]
- Jureczka, J.; Dopita, M.; Gałka, M.; Krieger, W.; Kwarciński, J.; Martinec, P. Geological Atlas of Coal Deposits of the Polish and Czech Parts of the Upper Silesian Coal Basin; Publications Polish Geological Institute: Warsaw, Poland, 2005. [Google Scholar]
- Górecka, E.; Kozłowski, A.; Kibitlewski, S. The Silesian-Cracow Zn–Pb deposits, Poland, considerations on ore-forming processes. InCarbonate—Hosted Zinc—Lead Deposits in the Silesian—Cracow Area; Górecka, E., Leach, D.L., Kozłowski, A., Eds.; Papers of the Polish Geological Institute: Warsaw, Poland, 1996; Volume 154, pp. 167–182. [Google Scholar]
- ISO 7404-3. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 3: Method of Determining Maceral Group Composition; International Organization for Standardization: Geneva, Switzerland, 2009; p. 7. [Google Scholar]
- ISO 7404-5. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 5: Method of Determining Microscopically the Reflectance of Vitrinite; International Organization for Standardization: Geneva, Switzerland, 2009; p. 14. [Google Scholar]
- PN-ISO 1171:2002. Solid fuels. Ash determination; International Organization Standarization: Geneva, Switzerland, 2002. [Google Scholar]
- Marczak, M. Genesis and Regularities of the Trace Elements Occurrence in the Chełm Coal Deposit at Coal Basin of Lublin; Scientific Papers of Silesian University in Katowice; Jachowicz, A., Konstatntynowicz, E., Eds.; University of Silesia Publishing House: Katowice, Poland, 1985; Volume 748, pp. 1–109. [Google Scholar]
- Lewińska-Preis, L.; Fabiańska, M.J.; Ćmiel, S.; Kita, A. Geochemical distribution of trace elements in Kaffiovra and Longyearbyen coals Spitrsbergen Norway. Int. J Coal Geol. 2009, 80, 211–223. [Google Scholar] [CrossRef]
- Parzentny, H.R.; Róg, L. The role of mineral matter in concentrating uranium and thorium in coal and combustion residues from power plant in Poland. Minerals 2019, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- E/ECE/]ENERGY/1998/19. International Classification of in-Seam Coals; United Nations: New York, NY, USA; Geneva, Switzerland, 1998. [Google Scholar]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Vasconcelos, L.S. The petrographic composition of world coals. Statistical results obtained from a literature survey with reference to coal type (maceral composition). Int. J. Coal Geol. 1999, 40, 27–58. [Google Scholar] [CrossRef]
- Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O’Keefe, J.M.K.; Tatu, C.A.; Buia, G. Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petroşani basin (southern Carpathian Mountains), Romania. Int. J. Coal Geol. 2010, 82, 68–80. [Google Scholar] [CrossRef]
- Moosavirad, S.M.; Rasouli, J.; Janardhana, M.R.; Moghadam, M.R.; Shankara, M. Petrographic, mineralogy, and geochemistry of coals of Pabedana, Kerman Province, Central Iran. Arab. J. Geosci. 2013, 6, 3623–3634. [Google Scholar] [CrossRef]
- Eskenazy, G. Trace elements geochemistry of the Dobrudza coal basin. Int. J. Coal Geol. 2009, 78, 192–200. [Google Scholar] [CrossRef]
- Eble, C.F.; Pierce, B.S.; Grady, W.C. Palynology, petrography and geochemistry of the Sewickley coal Bed (Monongahela Group, Late Pennsylvanian), Northern Appalachian Basin, USA. Int. J. Coal Geol. 2003, 55, 187–204. [Google Scholar] [CrossRef]
- Bouśka, V. Geochemistry of coal. InCzechoslovak Academy of Sciences; Cambel, B., Ed.; Czechoslovak Academy of Sciences: Prague, Czech Republic, 1981; p. 259. [Google Scholar]
- Alastuey, A.; Jimenez, A.; Plana, F.; Suarez-Ruiz, I. Geochemistry, mineralogy, and technological properties of the main Stephanian (Carboniferous) coal seams from the Puertollano Basin, Spain. Int. J. Coal Geol. 2001, 45, 247–265. [Google Scholar] [CrossRef]
- Padgett, P.L.; Rimmer, S.M.; Term, J.C.; Eble, C.F.; Mastalerz, M. Sulfur variability and petrology of the Lower Black Coal Member (Pensylvanian) in Southwest Indiana. Int. J. Coal Geol. 1999, 39, 97–120. [Google Scholar] [CrossRef]
- Hower, J.C.; Wagner, N.J.; O’Keefe, J.M.K.; Drew, J.W.; Stucker, J.D.; Richardson, A.R. Maceral types in some Permian sothern African coals. Int. J. Coal Geol. 2012, 100, 93–107. [Google Scholar] [CrossRef]
- Różkowski, A.; Rudzińska, T.; Bukowy, S. Thermal brines a potential Skurce of the ore mineralization of the Silesia—Cracow Area. InResearch of the Genesis of Zinc—Lead Deposits of Upper Silesia; Malinowski, J., Ed.; Geological Publications: Warsaw, Poland, 1979; pp. 59–85. [Google Scholar]
- Kuhl, J.; Kopiec, A.; Smolińska, U. Sulfates and native sulfur in coal from the 625 coal seam and in the accompanying rocks at the 1-M mine. PrzeglądGórniczy 1970, 26, 5–12. (In Polish) [Google Scholar]
- Nieć, M.; Łabuś, J. Occurrence of barite in the “Sobieski” coal mine near Jaworzno. PrzeglądGórniczy 1966, 22, 321–323. (In Polish) [Google Scholar]
- Dai, D.; Chou, C.-L.; Yue, M.; Lou, K.; Ren, D. Mineralogy and geochemistry of a late Permian coal in the Dafang Coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. Int. J. Coal Geol. 2005, 61, 241–258. [Google Scholar] [CrossRef]
- Zubovic, P.; Stadnichenko, T.; Sheffey, N.B. Distribution of minor elements in coal beds of the Eastern Interior Region. Geol. Surv. Bull. 1964, 1117-B, 1–41. [Google Scholar]
- Eskenazy, G. Adsorption of titanium on peat and coals. Fuel 1972, 51, 221–223. [Google Scholar] [CrossRef]
- Miller, R.N.; Given, P.H. The association of major, minor and trace inorganic elements with lignites: I. Experimental approach and study of a North Dakota lignite. Geoch. Cosmoch. Acta 1986, 50, 2033–2043. [Google Scholar] [CrossRef]
- Miller, R.N.; Given, P.H. The association of major, minor and trace inorganic elements with lignites: II. Minerals, and major and minor element profiles, in four seams. Geoch. Cosmoch. Acta 1987, 51, 1311–1322. [Google Scholar] [CrossRef]
- Kokowska, M. Variability of coal sulphurization within seams 610 and 620 in “Marcel” and “Rydułtowy” coal mine (the Rybnik region). Science Notebooks of Silesian Technical University. Mining 1999, 241, 107–125. [Google Scholar]
- Huggins, F.E.; Huffman, G.P. How do lithophile elements occur in organic association in bituminous coals. Int. J. Coal Geol. 2004, 58, 193–204. [Google Scholar] [CrossRef]
- Parzentny, H.R.; Marczak, M. Geochemical interpretation of chemical compisition of ashes from coals coming from the Upper Silesian Coalfield. PrzeglądGórniczy 1990, 46, 34–36. (In Polish) [Google Scholar]
- Ptak, B.; Różkowska, A. Geochemical Atlas of Coal Deposits Upper Silesian Coal Basin; Publishing of Polish Geological Institute: Warsaw, Poland, 1995; p. 53. [Google Scholar]
- Hill, P.A. Vertical distribution of elements in Deposit No. 1, Hat Creek, British Columbia: A preliminary study. Int. J. Coal Geol. 1990, 15, 77–111. [Google Scholar] [CrossRef]
- Parzentny, H. Differences in content and bonding pattern of certain elements in coal of the Upper Silesian Caol Basin throughout a single seam pfofile. PrzeglądGórniczy 1989, 45, 17–21. (In Polish) [Google Scholar]
- Chen, J.; Chen, P.; Yao, D.; Huang, W.; Tang, S.; Wang, W.; Liu, W.; Hu, Y.; Zhang, B.; Sha, J. Abundance, distribution, and modes of occurrence of uranium in Chinese Coals. Minerals 2017, 7, 239. [Google Scholar] [CrossRef] [Green Version]
- Duan, P.; Wang, W.; Sang, S.; Qian, F.; Shao, P.; Zhao, X. Partitioning of hazardous elements during preparation of high-uranium coal from Rongyang, Guizhou, China. J. Geochem. Explor. 2018, 185, 81–92. [Google Scholar] [CrossRef]
- Duan, P.; Wang, W.; Sang, S.; Tang, Y.; Ma, M.; Zhang, W.; Liang, B. Geochemistry of toxic elements and their removal via the preparation of high-uranium coal in Southwestern China. Minerals 2018, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhou, C.; Zhang, N.; Pan, J.; Cao, S.; Tang, M.; Ji, W.; Hu, T. Modes of occurrence and partitioning behavior of trace elements during coal preparation—A case study in Guizhou Province, China. Fuel 2019, 243, 79–87. [Google Scholar] [CrossRef]
- Strugała, A.; Makowska, D.; Bytnar, K.; Rozwadowska, T. Analysis of the contents of selected critical elements in waste from the hard coal cleaning process. Polityka Energetyczna Energy Policy J. 2014, 17, 77–89. (In Polish) [Google Scholar]
- Duan, P.; Wang, W.; Sang, S.; Ma, M.; Wang, J.; Zhang, W. Modes of occurrence and removal of toxic elements from high uranium coals of Rongyang Mine by stepped release flotation. Energy Sci. Eng. 2019, 7, 1–9. [Google Scholar] [CrossRef]
- Makowska, D.; Bytnar, K.; Dziok, T.; Rozwadowska, T. Effect of coal cleaning on the content of some heavy metals in Polish bituminous coal. PrzemysłChemiczny 2014, 93, 2048–2050. [Google Scholar]
- Parzentny, H.R. The Influence of Inorganic Mineral Substances on Content of Certain Trace Elements in the Coal of the Upper Silesian Coalfield; Scientific Papers of Silesian University in Katowice; Jankowski, T., Ed.; University of Silesia Publishing House: Katowice, Poland, 1995; Volume 1460, p. 90. (In Polish) [Google Scholar]
- Tang, Y.; Yang, C.; Finkelman, R.B.; Feng, K.; Ma, W.; Li, X. Behavior of minerals and trace elements during cleaning of three coals with moderately high ash yields. Energy Fuels 2020, 34, 2501–2515. [Google Scholar] [CrossRef]
- Finkelman, R.B. Health impacts of coal: Facts and fallacies. J. Hum. Environ. 2007, 36, 103–106. [Google Scholar] [CrossRef]
- Duan, P.; Wang, W.; Liu, X. Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high-sulfur coal, Yunnan Province, China. Int. J. Coal Geol. 2017, 173, 129–141. [Google Scholar] [CrossRef]
- Hower, J.C.; Dai, S.; Eskenazy, G. Distribution of uranium and other radionuclides in coal and coal combustion products, with discussion of occurrences of combustion products in kentucky power plants. Coal Comb. Gasif. Prod. 2016, 8, 44–53. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, B.; Zhong, Z.; Xiao, R.; Tang, Z.; Ren, H. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler. Fuel Proc. Technol. 2004, 86, 23–32. [Google Scholar] [CrossRef]
- Linak, W.P.; Wendt, J.O.L. Toxic metal emissions from incineration: Mechanisms and control. Prog. Energy Combust. Sci. 1993, 19, 145–185. [Google Scholar] [CrossRef]
- Querol, X.; Fernández-Turiel, J.L.; López-Soler, A. Trace elements in coal and their behavior during combustion in a large power station. Fuel 1995, 74, 331–343. [Google Scholar] [CrossRef]
- Sekine, Y.; Sakajin, K.; Kikuchi, E. Release behavior of trace elements from coal during high-temperature processing. Powder Technol. 2008, 180, 210–215. [Google Scholar] [CrossRef]
- Zhao, S.; Duan, Y.; Li, Y.; Liu, M.; Lu, J.; Ding, Y.; Gu, X.; Tao, J.; Du, M. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. Fuel 2018, 2014, 597–606. [Google Scholar] [CrossRef]
- Bartoňová, L.; Raclavská, H.; Čech, B.; Kucbel, M. Behavior of Pb during coal combustion: An overview. Sustainability 2019, 11, 6061. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Meng, Q.; Feng, Q.; Zhou, L.; Cui, Y.; Li, W. Occurrence and release of cadmium, chromium, and lead from stone coal combustion. Int. J. Coal Sci. Technol. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int. J. Coal Geol. 2010, 81, 320–332. [Google Scholar] [CrossRef]
- Vejahati, F.; Xu, Z.; Gupta, R. Trace elements in coal: associations with coal and mineralsmand their behaviour during coal utilization—A review. Int. J. Coal Geol. 2010, 14, 904–911. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Quin, S.; Panchal, B.; Sun, Y.; Niu, H. Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants. Fuel 2019, 258, 116062. [Google Scholar] [CrossRef]
- Smołka-Danielowska, D. The X-ray Structure Analysis of Amorphous and Nanocrystalline Materials; Printing House WW, Earth Science Series; Jankowski, A., Ed.; University of Silesia: Katowice, Poland, 2013; pp. 1–112. (In Polish) [Google Scholar]
- Zhang, Y.; Liu, G.; Chou, C.-L.; Wang, L.; Kang, Y. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China. Geochem. Trans. 2007, 8, 14. [Google Scholar] [CrossRef] [Green Version]
Component | Researched Coal | World Coal Deposit |
---|---|---|
In coal | ||
Vitrinite (vol. %) | 62.7 (66.8) * | 68 [56] |
Liptinite (vol. %) | 7.7 (8.2) * | 12 [56] |
Inertinite (vol. %) | 23.4 (25.0) * | 20 [56] |
Mineral matter (vol. %) ** | 6.2 | 5.4 [57], 8.97 [58] |
Reflectance (%) | 0.74 | 0.58–0.74 [58], 0.66–0.92 [59] |
Ash yield (wt.%) | 11.60 | 11.19 [58], 12.40 [60] |
Total sulphur (wt.%) | 1.16 | 1.71 [61] 1.24 [62], 1.00 [63] |
Sulphate sulphur (wt.%) | 0.21 | 0.12 [62], 0.10 [64] |
Pyritic sulphur (wt.%) | 0.52 | 0.52 [62], 0.91 [64] |
Organic sulphur (wt.%) | 0.43 | 0.60 [62], 0.31 [64] |
V | 31.7 | 28 ± 1 [38] |
Cr | 8.7 | 17 ± 1 [38] |
Mn | 102.8 | 71 ± 5 [38] |
Co | 6.8 | 6.0 ± 0.2 [38] |
Ni | 13.9 | 17 ± 1 [38] |
Cu | 10.6 | 16 ± 1 [38] |
Zn | 56.8 | 28 ± 2 [38] |
As | 3.9 | 9.0 ± 0.7 [38] |
Rb | 13.8 | 18 ± 1 [38] |
Sr | 126.8 | 100 ± 7 [38] |
Mo | 0.1 | 2.1 ± 0.1 [38] |
Ag | <0.01 | 0.100 ± 0.016 [38] |
Cd | 0.10 | 0.20 ± 0.04 [38] |
Sn | 0.1 | 1.4 ± 0.1 [38] |
Sb | 0.1 | 1.00 ± 0.09 [38] |
Ba | 171.6 | 150 ± 10 [38] |
Pb | 23.6 | 9.0 ± 0.7 [38] |
In coal ash (wt.%) | ||
SiO2 | 32.12 | 34.04 [57], 10–45 [61] |
TiO2 | 0.83 | 0.88 ± 0.03 [38] |
Al2O3 | 20.66 | 22.90 [57], 1–11 [61] |
Fe2O3 | 15.85 | 23.45 [57], 1.5–5.5 [61] |
MgO | 4.48 | 4.06 [57], 1–20 [61] |
CaO | 9.99 | 9.17 [57], 2–45 [61] |
Na2O | 1.29 | 3.03 [57], 0.2–5 [61] |
K2O | 1.43 | 1.92 [57], 0.1–2.5 [61] |
P2O5 | 0.688 | 0.344 ± 0.022 [38] |
SO3 | 12.66 | 5–20 [61] |
Element | USCB | |||
---|---|---|---|---|
General | Western Part | Central Part | Eastern Part | |
V | V-Cl * = 0.63 | V-Cl = 0.66 | V-Vt = 0.33 | V-SiO2 = 0.76 |
V-SiO2 = 0.77 | V-SiO2 = 0.78 | V-Cl = 0.76 | V-Al2O3 = 0.69 | |
V-Al2O3 = 0.65 | V-Al2O3 = 0.82 | V-SiO2 = 0.77 | V-TiO2 = 0.81 | |
V-K2O = 0.71 | V-K2O = 0.74 | V-Al2O3 = 0.61 | V-So = 0.71 | |
V-TiO2 = 0.72 | V-TiO2 = 0.57 | V-K2O = 0.72 | ||
V-So = 0.52 | V-TiO2 = 0.60 | |||
V-So = 0.36 | ||||
Cr | Cr-Cl = 0.39 | Cr-SiO2 = 0.53 | Cr-Cl = 0.46 | |
Cr-SiO2 = 0.33 | Cr-Al2O3 = 0.43 | Cr-SiO2 = 0.45 | ||
Cr-Al2O3 = 0.43 | (p = 0.055) | Cr-Al2O3 = 0.48 | ||
Cr-K2O = 0.35 | Cr-K2O = 0.48 | Cr-K2O = 0.43 | ||
Cr-TiO2 = 0.40 | Cr-TiO2 = 0.44 | Cr-TiO2 = 0.49 | ||
Mn | Mn-Cb = 0.46 | Mn-CaO = 0.41 | Mn-L = 0.33 | Mn-Cb = 0.97 |
Mn-CaO = 0.56 | (p = 0.066) | Mn-Cb = 0.25 | Mn-CaO = 0.80 | |
Mn-MgO = 0.46 | Mn-MgO = 0.46 | Mn-CaO = 0.52 | Mn-MgO = 0.93 | |
Mn-MgO = 0.33 | ||||
Mn-Ss = 0.35 | ||||
Mn-Sp = 0.62 | ||||
Co | Co-Sf = 0.30 | Co-SiO2 = 0.37 | Co-Cb = 0.30 | |
(p = 0.101) | ||||
Co-TiO2 = 0.58 | ||||
Co-Ss = 0.51 | ||||
Ni | Ni-L= 0.35 | Ni-SiO2 = 0.47 | Ni-L = 0.28 | |
Ni-Sf = 0.35 | Ni-TiO2 = 0.56 | Ni-Sf = 0.27 | ||
Cu | Cu-SiO2 = 0.25 | Cu-SiO2 = 0.55 | Cu-Cl = 0.27 | |
Cu-Al2O3 = 0.29 | Cu-Al2O3 = 0.52 | Cu-Sf = 0.40 | ||
Cu-K2O = 0.31 | Cu-TiO2 = 0.44 | Cu-TiO2 = 0.29 | ||
Zn | Zn-Sf = 0.47 | |||
As | As-Sf = 0.33 | As-Sf = 0.68 | As-Ss = 0.33 | |
As-Sp = 0.45 | As-Sp = 0.51 | As-Sp = 0.35 | ||
As-Fe2O3 = 0.33 | As-So = 0.30 | |||
Rb | Rb-Cl = 0.73 | Rb-Cl = 0.74 | Rb-Cl = 0.81 | Rb-K2O = 0.69 |
Rb-Cb = 0.43 | Rb-Cb = 0.45 | Rb-SiO2 = 0.76 | Rb-So = 0.67 | |
Rb-SiO2 = 0.74 | Rb-SiO2 = 0.57 | Rb-Al2O3 = 0.56 | ||
Rb-Al2O3 = 0.62 | Rb-Al2O3 = 0.58 | Rb-K2O = 0.81 | ||
Rb-K2O = 0.76 | Rb-K2O = 0.74 | Rb-TiO2 = 0.50 | ||
Rb-TiO2 = 0.65 | Rb-TiO2 = 0.44 | |||
Sr | Sr-Cl = 0.52 | Sr-Vt = 0.49 | Sr-Cl = 0.41 | Sr-L = 0.68 |
Sr-Cb = 0.37 | Sr-Cl = 0.42 | Sr-SiO2 = 0.52 | Sr-K2O = 0.75 | |
Sr-SiO2 = 0.59 | (p = 0.056) | Sr-Al2O3 = 0.52 | ||
Sr-Al2O3 = 0.64 | Sr-Al2O3 = 0.58 | Sr-K2O = 0.55 | ||
Sr-K2O = 0.65 | Sr-K2O = 0.42 | Sr-TiO2 = 0.49 | ||
Sr-TiO2 = 0.54 | Sr-P2O5 = 0.63 | Sr-P2O5 = 0.48 | ||
Sr-P2O5 = 0.64 | ||||
Mo | Mo-Na2O = 0.62 | Mo-Na2O = 0.58 | Mo-Na2O = 0.99 | |
Cd | Cd-Sf = 0.35 | Cd-L = 0.37 | ||
Cd-L = 0.45 | Cd-Sf = 0.43 | |||
Cd-CaO = 0.34 | ||||
Cd-MgO = 0.34 | ||||
Sn | Sn-I = 0.39 | Sn-L = 0.36 | Sn-I = 0.38 | Sn-Na2O = 0.88 |
Sn-Na2O = 0.55 | (p = 0.105) | Sn-Na2O = 0.35 | ||
Sn-Na2O = 0.67 | ||||
Sb | Sb-L = 0.34 | Sb- Na2O = 0.96 | ||
(p = 0.128) | ||||
Sb-Na2O = 0.67 | ||||
Ba | Ba-Cl = 0.43 | Ba-Cl = 0.52 | Ba-Cl = 0.40 | |
Ba-SiO2 = 0.57 | Ba-Al2O3 = 0.47 | Ba-SiO2 = 0.49 | ||
Ba-Al2O3 = 0.54 | Ba-K2O = 0.59 | Ba-Al2O3 = 0.41 | ||
Ba-K2O = 0.58 | Ba-K2O = 0.48 | |||
Ba-TiO2 = 0.59 | Ba-TiO2 = 0.42 | |||
Ba-P2O5 = 0.41 | ||||
Pb | Pb-Sf = 0.53 | Pb-Sf = 0.42 | Pb-Sf = 0.44 | Pb-Sp = 0.69 |
Pb-Sp = 0.43 | (p = 0.059) | |||
Pb-Ss = 0.36 | Pb-SiO2 = 0.53 | |||
Pb-Al2O3 = 0.46 | ||||
Pb-TiO2 = 0.50 |
Element | CSS* | MS* | USSS* | PS* |
---|---|---|---|---|
V | V-SiO2 ** = 0.55 | V-Cl = 0.66 | V-Vt = 0.59 | V-Vt = 0.42 |
V-K2O = 0.86 | V-Cb = 0.37 | V-Cl = 0.58 | V-Cl = 0.72 | |
V-SiO2 = 0.82 | V-Cb = 0.38 | V-SiO2 = 0.65 | ||
V-Al2O3 = 0.62 | V-SiO2 = 0.82 | V-Al2O3 = 0.69 | ||
V-K2O = 0.81 | V-Al2O3 = 0.79 | V-K2O = 0.62 | ||
V-TiO2 = 0.60 | V-K2O = 0.75 | V-TiO2 = 0.74 | ||
V-TiO2 = 0.67 | ||||
Cr | Cr-Vt = 0.86 | Cr-Cl = 0.59 | Cr-Na2O = 0.42 | |
Cr-K2O = 0.77 | Cr-SiO2 = 0.57 | Cr-TiO2 = 0.40 | ||
Cr-Fe2O3 = 0.83 | Cr-Al2O3 = 0.55 | |||
Cr-K2O = 0.54 | ||||
Cr-TiO2 = 0.60 | ||||
Mn | Mn-Cb = 0.92 | Mn-Fe2O3= 0.42 | Mn-L = 0.34 | Mn-Cb = 0.46 |
Mn-CaO = 0.86 | Mn-CaO = 0.36 | Mn-CaO = 0.62 | Mn-CaO = 0.54 | |
Mn-MgO = 0.94 | Mn-MgO = 0.43 | Mn-MgO = 0.59 | Mn-MgO = 0.42 | |
Mn-Cb = 0.33 | Mn-Sp = 0.64 | |||
(p = 0.079) | ||||
Co | Co-Fe2O3= 0.73 | Co-Vt = 0.31 | Co-Sf = 0.38 | Co-Cb = 0.41 |
Co-K2O = 0.85 | (p = 0.100) | Co-Vt = 0.46 | ||
Co-SiO2 = 0.69 | ||||
Co-Al2O3 = 0.45 | ||||
Co-TiO2 = 0.62 | ||||
Ni | Ni-Vt = 0.84 | Ni-Cl = 0.38 | Ni-Sf = 0.56 | |
Ni-Fe2O3 = 0.87 | Ni-Cb = 0.66 | Ni-L = 0.72 | ||
Ni-Sf = 0.59 | ||||
Ni-SiO2 = 0.76 | ||||
Ni-TiO2 = 0.68 | ||||
Cu | Cu-TiO2 = 0.63 | Cu-Al2O3 = 0.40 | Cu-Vt = 0.48 | Cu-Cl = 0.49 |
Cu-P2O5 = 0.46 | Cu-SiO2 = 0.49 | Cu-SiO2 = 0.45 | ||
Cu-Al2O3 = 0.60 | ||||
Cu-K2O = 0.49 | ||||
Cu-TiO2 = 0.57 | ||||
Zn | Zn-CaO = 0.52 | Zn-Sf = 0.59 | ||
(p = 0.072) | ||||
Zn-Na2O = 0.75 | Zn-Fe2O3 = 0.59 | |||
As | As-A = 0.36 | As-Cb = 0.45 | As-Sf = 0.40 | |
As-So = 0.41 | As-Sp = 0.37 | As-Sp = 0.48 | ||
As-Ss = 0.52 | As-Cd = 0.70 | |||
As-Ss = 0.65 | ||||
Rb | Rb-SiO2 = 0.65 | Rb-Cl = 0.68 | Rb-Vt = 0.45 | Rb-Cl = 0.61 |
Rb-Al2O3 = 0.49 | Rb-SiO2 = 0.78 | Rb-Cl = 0.71 | Rb-SiO2 = 0.71 | |
(p = 0.087) | Rb-Al2O3 = 0.55 | Rb-Cb = 0.41 | Rb-Al2O3 = 0.57 | |
Rb-K2O = 0.79 | Rb-K2O = 0.87 | Rb-SiO2 = 0.68 | Rb-K2O = 0.69 | |
Rb-TiO2 = 0.48 | Rb-Al2O3 = 0.66 | Rb-TiO2 = 0.68 | ||
Rb-K2O = 0.84 | ||||
Rb-TiO2 = 0.51 | ||||
Sr | Sr-I = 0.80 | Sr-Cb = 0.62 | Sr-Vt = 0.47 | Sr-Vt = 0.40 |
Sr-SiO2 = 0.79 | Sr-SiO2 = 0.62 | Sr-Cl = 0.37 | Sr-Cl = 0.75 | |
Sr-Al2O3 = 0.77 | Sr-Al2O3 = 0.38 | Sr-SiO2 = 0.42 | Sr-SiO2 = 0.66 | |
Sr-P2O5 = 0.85 | Sr-K2O = 0.68 | Sr-Al2O3 = 0.55 | Sr-Al2O3 = 0.84 | |
Sr0-TiO2 = 0.71 | Sr-K2O = 0.53 | Sr-K2O = 0.56 | ||
Sr-P2O5 = 0.73 | Sr-P2O5 = 0.50 | Sr-TiO2 = 0.64 | ||
Sr-P2O5 = 0.64 | ||||
Mo | Mo-Na2O = 0.89 | Mo-P2O5 = 0.57 | Mo-I = 0.55 | Mo-Na2O = 0.87 |
Mo-Na2O = 0.65 | (p = 0.062) | |||
Mo-CaO = 0.61 | ||||
Mo-MgO = 0.70 | ||||
Cd | Cd-I = 0.281 | Cd-Cl = 0.81 | Cd-Sf = 0.49 | |
(p = 0.103) | Cd-Q = 0.85 | Cd-L = 0.48 | ||
Cd-Cl = 0.65 | ||||
Cd-Fe2O3= 0.46 | ||||
Cd-P2O5 = 0.38 | ||||
Sn | Sn-Na2O = 0.81 | Sn-P2O5 = 0.47 | Sn-I = 0.62 | Sn-Na2O = 0.87 |
Sn-MgO = 0.70 | Sn-MgO = 0.58 | |||
Sn-Na2O = 0.35 | ||||
Sb | Sb-Vt = 0.80 | Sb-Cl = 0.58 | Sb-Na2O = 0.78 | |
Sb-Sf = 0.84 | Sb- Fe2O3 = 0.43 | |||
Sb-K2O = 0.81 | Sb-P2O5 = 0.44 | |||
Ba | Ba-Vt = 0.82 | Ba-K2O = 0.40 | Ba-Vt = 0.37 | Ba-SiO2 = 0.41 |
Ba-Fe2O3 = 0.87 | Ba-TiO2 = 0.47 | Ba-Cl = 0.57 | Ba-Al2O3 = 0.62 | |
Ba-K2O = 0.76 | Ba-P2O5 = 0.41 | Ba-Cb = 0.40 | Ba-K2O = 0.40 | |
Ba-SiO2 = 0.48 | Ba-TiO2 = 0.53 | |||
Ba-K2O = 0.51 | Ba-P2O5 = 0.73 | |||
Pb | Pb-Sp = 0.69 | Pb-Sf = 0.61 | Pb-Cb = 0.41 | Pb-Sf = 0.72 |
Pb-Sf = 0.53 | Pb-Sp = 0.70 | Pb-SiO2 = 0.65 | Pb-L = 0.60 | |
(p = 0.064) | Pb-St = 0.81 | Pb-Al2O3 = 0.45 | ||
Pb-TiO2 = 0.71 | Pb-Fe2O3 = 0.49 | Pb-K2O = 0.37 | ||
Pb-P2O5 = 0.73 | (p = 0.088) | Pb-TiO2 = 0.65 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parzentny, H.R. Spatial Macroscale Variability of the Role of Mineral Matter in Concentrating Some Trace Elements in Bituminous Coal in a Coal Basin—A Case Study from the Upper Silesian Coal Basin in Poland. Minerals 2020, 10, 422. https://doi.org/10.3390/min10050422
Parzentny HR. Spatial Macroscale Variability of the Role of Mineral Matter in Concentrating Some Trace Elements in Bituminous Coal in a Coal Basin—A Case Study from the Upper Silesian Coal Basin in Poland. Minerals. 2020; 10(5):422. https://doi.org/10.3390/min10050422
Chicago/Turabian StyleParzentny, Henryk R. 2020. "Spatial Macroscale Variability of the Role of Mineral Matter in Concentrating Some Trace Elements in Bituminous Coal in a Coal Basin—A Case Study from the Upper Silesian Coal Basin in Poland" Minerals 10, no. 5: 422. https://doi.org/10.3390/min10050422