High-Reliability Semiconductor Devices and Integrated Circuits, 3rd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "D1: Semiconductor Devices".

Deadline for manuscript submissions: 25 December 2025 | Viewed by 1656

Special Issue Editors


E-Mail
Guest Editor
China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China
Interests: failure mechanism and model of key devices; prognostics and health management (PHM) of power conversion system (PCS); PHM of system on chip (SoC)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Microelectronics, Xidian University, Xi’an 710071, China
Interests: integrated circuits design; simulation and evaluation method of radiation effects in aerospace integrated circuits
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Guangzhou institute of Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
Interests: VLSI design and optimization; brain-inspired computing; EDA technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In this Special Issue titled “High-Reliability Semiconductor Devices and Integrated Circuits”, we will focus on the simulation, modeling, design, and optimization of high-reliability devices and integrated circuits for automobiles, avionics, and aerospace. High-reliability devices and integrated circuits have been intensely studied because they are widely used in traditional aerospace electronic systems, avionics, automobiles, etc. In recent years, in addition to the development of traditional highly reliable devices and circuits, new technologies such as intelligent analysis, optimization, and manufacturing based on artificial intelligence and other novel technologies have advanced the field of high-reliability devices and circuits.

This Special Issue will collect research works focused on mathematical models, high-efficiency/high-precision numerical solution methods, and intelligent design and optimization methods for high-reliability materials and devices and integrated circuits. We welcome novel works reporting on high-reliability devices and circuits and their applications to discuss the most recent breakthroughs and their potential impacts in related research fields. The specific topics of interest include, but are not limited to, the following:

  • Novel design methods for high-reliability devices and integrated circuits;
  • Novel optimization technologies for high-reliability devices and integrated circuits;
  • Advanced device structures or materials for high-reliability design;
  • Reliability analyses of special environments, such as those with a strong magnetic field, radiation environment, etc.;
  • Applications of novel technology, such as AI, in high-reliability design and analysis;
  • Novel simulation technologies for functional safety.

Dr. Yiqiang Chen
Prof. Dr. Yi Liu
Dr. Changqing Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • high reliability
  • semiconductor devices
  • integrated circuits
  • strong magnetic field
  • radiation environment
  • intelligent design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2521 KiB  
Article
A Multimodal CMOS Readout IC for SWIR Image Sensors with Dual-Mode BDI/DI Pixels and Column-Parallel Two-Step Single-Slope ADC
by Yuyan Zhang, Zhifeng Chen, Yaguang Yang, Huangwei Chen, Jie Gao, Zhichao Zhang and Chengying Chen
Micromachines 2025, 16(7), 773; https://doi.org/10.3390/mi16070773 - 30 Jun 2025
Abstract
This paper proposes a dual-mode CMOS analog front-end (AFE) circuit for short-wave infrared (SWIR) image sensors, which integrates a hybrid readout circuit (ROIC) and a 12-bit two-step single-slope analog-to-digital converter (TS-SS ADC). The ROIC dynamically switches between buffered-direct-injection (BDI) and direct-injection (DI) modes, [...] Read more.
This paper proposes a dual-mode CMOS analog front-end (AFE) circuit for short-wave infrared (SWIR) image sensors, which integrates a hybrid readout circuit (ROIC) and a 12-bit two-step single-slope analog-to-digital converter (TS-SS ADC). The ROIC dynamically switches between buffered-direct-injection (BDI) and direct-injection (DI) modes, thus balancing injection efficiency against power consumption. While the DI structure offers simplicity and low power, it suffers from unstable biasing and reduced injection efficiency under high background currents. Conversely, the BDI structure enhances injection efficiency and bias stability via an input buffer but incurs higher power consumption. To address this trade-off, a dual-mode injection architecture with mode-switching transistors is implemented. Mode selection is executed in-pixel via a low-leakage transmission gate and coordinated by the column timing controller, enabling low-current pixels to operate in low-noise BDI mode, whereas high-current pixels revert to the low-power DI mode. The TS-SS ADC employs a four-terminal comparator and dynamic reference voltage compensation to mitigate charge leakage and offset, which improves signal-to-noise ratio (SNR) and linearity. The prototype occupies 2.1 mm × 2.88 mm in a 0.18 µm CMOS process and serves a 64 × 64 array. The AFE achieves a dynamic range of 75.58 dB, noise of 249.42 μV, and 81.04 mW power consumption. Full article
Show Figures

Figure 1

21 pages, 5073 KiB  
Article
Numerical Simulation of Thermal Cycling and Vibration Effects on Solder Layer Reliability in High-Power Diode Lasers for Space Applications
by Lei Cheng, Huaqing Sun, Xuanjun Dai and Bingxing Wei
Micromachines 2025, 16(7), 746; https://doi.org/10.3390/mi16070746 - 25 Jun 2025
Viewed by 133
Abstract
High-power laser diodes (HPLDs) are increasingly used in space applications, yet solder layer (SL) reliability critically limits their performance and lifespan. This study employs finite element analysis to evaluate SL failure mechanisms in microchannel-cooled HPLDs with two packaging configurations under thermal cycling and [...] Read more.
High-power laser diodes (HPLDs) are increasingly used in space applications, yet solder layer (SL) reliability critically limits their performance and lifespan. This study employs finite element analysis to evaluate SL failure mechanisms in microchannel-cooled HPLDs with two packaging configurations under thermal cycling and vibration. Based on the Anand constitutive model, contour plot analysis revealed that the critical stress–strain regions in both SLs were located at their edges. The stress–strain values along the X-axis of the SLs exceeded those in other axial directions, and SL failure would preferentially initiate from the edges along the cavity length direction. During random vibration analysis with excitation applied along the Z-axis, the equivalent stresses in both SLs exceeded X-/Y-axis levels. However, these values remained far below their yield strengths, indicating that only elastic strain and high-cycle fatigue occurred in the SLs. The calculated thermal fatigue lives of the two SLs were 2851 cycles and 5730 cycles, respectively. Their random vibration fatigue lives were determined as 5.75 × 107 h and 8.31 × 107 h. Using damage superposition under combined thermal-vibration loading, the total fatigue lives were predicted as 14,821 h and 29,786 h, respectively, with thermal cycling-induced damage dominating the failure mechanism. Full article
Show Figures

Figure 1

12 pages, 1376 KiB  
Article
A High Dynamic Range and Fast Response Logarithmic Amplifier Employing Slope-Adjustment and Power-Down Mode
by Yanhu Wang, Rui Teng, Yuanjie Zhou, Mengchen Lu, Wei Ruan and Jiapeng Li
Micromachines 2025, 16(7), 741; https://doi.org/10.3390/mi16070741 - 25 Jun 2025
Viewed by 110
Abstract
Based on the GSMC 180 nm SiGe BiCMOS process, a parallel-summation logarithmic amplifier is presented in this paper. The logarithmic amplifier adopts a cascaded structure of nine-stage fully-differential limiting amplifiers (LA) to achieve high dynamic range. The ten-stage rectifier completes the conversion of [...] Read more.
Based on the GSMC 180 nm SiGe BiCMOS process, a parallel-summation logarithmic amplifier is presented in this paper. The logarithmic amplifier adopts a cascaded structure of nine-stage fully-differential limiting amplifiers (LA) to achieve high dynamic range. The ten-stage rectifier completes the conversion of amplified voltage to a logarithmic current signal. A log slope adjuster is proposed. It can provide slopes of 17–30 mV/dB by configuring an off-chip resistor to meet the detection requirements of different input power. Meanwhile, a power-down control unit is designed to reduce the power consumption to only 162 μW in standby mode. The post-simulation results show that under 5 V power supply voltage, the dynamic range exceeds 80 dB and the 3 dB bandwidth is 20 MHz–4 GHz. It also has a fast response time of 42 ns with a power consumption of 109 mW in normal operation mode. Full article
Show Figures

Figure 1

15 pages, 7987 KiB  
Article
Analysis and Optimization of Vertical NPN BJT for Strong Magnetic Fields
by Xinfang Liao, Kexin Guo, Changqing Xu, Yi Liu, Fanxin Meng, Junyi Zhou, Rui Ding, Juxiang Li, Kai Huang and Yintang Yang
Micromachines 2025, 16(6), 671; https://doi.org/10.3390/mi16060671 - 31 May 2025
Viewed by 361
Abstract
This study systematically investigates the electrical characteristics of the vertical NPN bipolar junction transistor (VNPN BJT) in the strong magnetic field environment, focusing on analyzing the effects of magnetic field direction and intensity on key parameters such as terminal current and current gain [...] Read more.
This study systematically investigates the electrical characteristics of the vertical NPN bipolar junction transistor (VNPN BJT) in the strong magnetic field environment, focusing on analyzing the effects of magnetic field direction and intensity on key parameters such as terminal current and current gain (β). The simulation results show that the magnetic field induces changes in the carrier distribution, thereby affecting the current transport path. Through the in-depth analysis of electron motion trajectories, potential distribution, and Hall voltage, this paper reveals the physical mechanisms behind the device’s characteristic changes under the magnetic field and discovers that the inherent asymmetry of the BJT structure induces significant magnetic anisotropy effects. On this basis, a design for interference-resistant structures in strong magnetic field environments is proposed, effectively suppressing the adverse effects of magnetic-field-sensitive directions on BJT performance and significantly improving the device’s stability in complex magnetic field environments. Full article
Show Figures

Figure 1

13 pages, 3451 KiB  
Article
Performance Degradation of Ga2O3-Based X-Ray Detector Under Gamma-Ray Irradiation
by Xiao Ouyang, Silong Zhang, Tao Bai, Zhuo Chen, Yuxin Deng, Leidang Zhou, Xiaojing Song, Hao Chen, Yuru Lai, Xing Lu, Liang Chen, Liangliang Miao and Xiaoping Ouyang
Micromachines 2025, 16(3), 339; https://doi.org/10.3390/mi16030339 - 14 Mar 2025
Viewed by 664
Abstract
X-ray response performances of a p-NiO/β-Ga2O3 hetero-junction diode (HJD) X-ray detector were studied before and after γ-ray irradiation at −200 V, with a total dose of 13.5 kGy(Si). The response performances of the HJD X-ray detector were influenced [...] Read more.
X-ray response performances of a p-NiO/β-Ga2O3 hetero-junction diode (HJD) X-ray detector were studied before and after γ-ray irradiation at −200 V, with a total dose of 13.5 kGy(Si). The response performances of the HJD X-ray detector were influenced by the trap-assistant conductive process of the HJD under reverse bias, which exhibited an increasing net (response) current, nonlinearity, and a long response time. After irradiation, the Poole–Frenkel emission (PFE) dominated the leakage current of HJDs due to the higher electric field caused by the increased net carrier concentration of β-Ga2O3. This conductive process weakened the performance of the HJD X-ray detector in terms of sensitivity, output linearity, and response speed. This study provided valuable insights into the radiation damage and performance degradation mechanisms of Ga2O3-based radiation detectors and offered guidance on improving the reliability and stability of these radiation detectors. Full article
Show Figures

Figure 1

Back to TopTop