MEMS Sensors and Actuators: Design, Fabrication and Applications, 2nd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "A:Physics".

Deadline for manuscript submissions: 30 December 2025 | Viewed by 294

Special Issue Editors

University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Interests: micro-electromechanical systems (MEMS); sensors and actuators
Special Issues, Collections and Topics in MDPI journals
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
Interests: flexible piezoeletric microelectromechanical system (flexble piezo-MEMS); piezoelectric dynamics; hydroelectrodynamics; mechanical energy harvesting and sensing; self-powered systems for healthcare monitoring; artificial intelligence & internet
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Hochschule für Technik und Wirtschaft Berlin, University of Applied Sciences, Treskowallee 8, 10318 Berlin, Germany
Interests: microsystems; piezoresistive sensor; sensor for harsh environments; SOI and SiC-based sensor; accelerometers; gas sensor; design and simulation of microsystems; graphene; material research; graphene-based sensors; biosensors; printed sensors; 2D sensors; technologies
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Micro-electromechanical systems (MEMS) are miniature, multi-functional smart microsystems consisting of sensors, actuators and microelectronics, typically made by micromachining technologies. Sensors are devices that can measure a parameter of interest, typically non-electrical, and generate an electrical signal that can be processed by microprocessors. On the other hand, actuators are devices that convert one signal into some other form of signal that can delivered to an environment of interest. Any application which requires interfacing between an electronic system and the non-electronic external world will require sensors and actuators. Since the last two decades, MEMS sensors and actuators have been finding new applications as most systems are required to become smaller, lower power and portable, and this trend is keeping gaining speed.

A few key application areas include: (1) low-power, hand-held smart electronics, (2) micromachined accelerometers for automobiles, (3) high-definition portable display systems based on micro mirrors, (4) micromechanically manipulated optical systems on a chip, (5) biochip for DNA analysis and cell assay, (6) implantable and wearable bioMEMS, (7) portable, hand-held mass spectrometry, (8) desktop atomic force microscopy, (9) fully-integrated, low-power MEMS-based wireless transceivers, etc.

The objective of this Special Issue is to present the most recent significant progress in the field of MEMS sensors and actuators. All authors from academia and industry are kindly invited to share their research innovations in this field. We particularly welcome review articles and original research papers aiming to the related key issues of basic research, devices and technology development, and practical application of MEMS sensors and actuators.

This Special Issue invites but is not limited to contributions in the following topics:

  • Novel transducer concepts;
  • New design, modeling and simulation techniques of MEMS;
  • New fabrication technology of complex micromechanical structures;
  • Reliability of sensors and actuators in harsh environment;
  • Advanced calibration or control of nonlinear actuators;
  • Flexible and soft microstructured sensors and actuators;
  • Practical application of MEMS sensors and actuators in new scenarios;
  • Review articles on MEMS sensors and actuators.

Dr. Lei Shao
Dr. Zhiran Yi
Prof. Dr. Ha Duong Ngo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • MEMS
  • sensors
  • actuators
  • transducers
  • microsystems
  • microfabrication

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 5885 KiB  
Article
Design and Fabrication of Silicon Pressure Sensors Based on Wet Etching Technology
by Fengchao Li, Shijin Yan, Cheng Lei, Dandan Wang, Xi Wei, Jiangang Yu, Yongwei Li, Pengfei Ji, Qiulin Tan and Ting Liang
Micromachines 2025, 16(5), 516; https://doi.org/10.3390/mi16050516 - 28 Apr 2025
Viewed by 143
Abstract
This paper presents a novel silicon-based piezoresistive pressure sensor composed of a silicon layer with sensing elements and a glass cover for hermetic packaging. Unlike conventional designs, this study employs numerical simulation to analyze the influence of varying roughness levels of the sensitive [...] Read more.
This paper presents a novel silicon-based piezoresistive pressure sensor composed of a silicon layer with sensing elements and a glass cover for hermetic packaging. Unlike conventional designs, this study employs numerical simulation to analyze the influence of varying roughness levels of the sensitive membrane on the sensor’s output response. Simulation results demonstrate that pressure sensors with smoother sensitive membranes exhibit superior performance in terms of sensitivity (5.07 mV/V/MPa), linearity (0.67% FS), hysteresis (0.88% FS), and repeatability (0.75% FS). Furthermore, an optimized process for controlling membrane roughness was achieved by adjusting the concentration of the etchant solution. Experimental results reveal that a membrane roughness of 35.37 nm was attained under conditions of 80 °C and 25 wt% TMAH. Additionally, the fabrication process of this piezoresistive pressure sensor was significantly simplified and cost-effective due to the adoption of a backside wet etching technique. The fabricated sensor demonstrates excellent performance metrics, including a sensitivity of 5.07 mV/V/MPa, a full-scale (FS) output of 101.42 mV, a hysteresis of 0.88% FS, a repeatability of 0.75% FS, and a nonlinearity of 0.67% FS. These results indicate that the proposed sensor is a promising tool for precise pressure measurement applications, offering both high performance and cost efficiency. This study not only advances the understanding of the impact of membrane roughness on sensor performance but also provides a practical and scalable fabrication approach for piezoresistive pressure sensors. Full article
Show Figures

Figure 1

Back to TopTop