Push–Push Electrothermal MEMS Actuators with Si-to-Si Contact for DC Power Switching Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Finite Element Analysis (FEA) Simulations
2.3. Microfabrication and SEM Characterization
3. Experimental Setup and Results
3.1. Test Setups
3.2. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, A.C.; Forsberg, F.; Lapisa, M.; Bleiker, S.J.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015, 1, 15005. [Google Scholar] [CrossRef]
- Tian, W.; Li, P.; Yuan, L. Research and analysis of MEMS switches in different frequency bands. Micromachines 2018, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.K.; Gurmaita, P.; Gurmaita, S.; Nema, R.K.; Yadav, R.; Shrivastav, H.; Chauhan, P.K. A Mini Review on MEMS Switches: Design, Fabrication, and Applications. In Proceedings of the 2023 3rd International Conference on Energy, Power and Electrical Engineering, EPEE 2023, Wuhan, China, 15–17 September 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023; pp. 96–103. [Google Scholar] [CrossRef]
- Burke, I. MEMS RF Switch Can Replace EMRs in Harsh Military Environments. Available online: https://www.electronicproducts.com/mems-rf-switch-can-replace-emrs-in-harsh-military-environments/ (accessed on 22 August 2025).
- Krakover, N.; Maimon, R.; Tepper-Faran, T.; Yitzhak, N.; Krylov, S. Reliability of an 1000 g range vertically integrated silicon on insulator (SOI) impact switch. In Proceedings of the 7th IEEE International Symposium on Inertial Sensors & Systems: 2020 symposium proceedings, Hiroshima, Japan, 23–26 March 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Soon, B.W.; Qian, Y.; Ng, E.J.; Hong, V.A.; Yang, Y.; Ahn, C.H.; Kenny, T.W.; Lee, C. Investigation of a Vacuum Encapsulated Si-to-Si Contact Microswitch Operated From −60 °C to 400 °C. J. Microelectromech. Syst. 2015, 24, 1906–1915. [Google Scholar] [CrossRef]
- Zhu, Y.; Pal, J. Low-voltage and high-reliability RF MEMS switch with combined electrothermal and electrostatic actuation. Micromachines 2021, 12, 1237. [Google Scholar] [CrossRef] [PubMed]
- Rogozhin, A.; Miakonkikh, A.; Tatarintsev, A.; Lebedev, K.; Kalnov, V.; Rudenko, K.; Lukichev, V. Silicon ohmic lateral-contact MEMS switch for RF applications. In Proceedings of the International Conference on Micro- and Nano-Electronics 2016, Zvenigorod, Russia, 7–8 January 2016; SPIE: Washington, DC, USA, 2016; p. 1022419. [Google Scholar] [CrossRef]
- Sim, S.M.; Lee, Y.; Jang, Y.-H.; Lee, Y.-S.; Kim, Y.-K.; Llamas-Garro, I.; Kim, J.-M. A 50–100 GHz ohmic contact SPDT RF MEMS silicon switch with dual axis movement. Microelectron. Eng. 2016, 162, 69–74. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, L.; Huang, X.; Huang, Z.; Huang, M. Implementation of Highly Reliable Contacts for RF MEMS Switches. Micromachines 2024, 15, 155. [Google Scholar] [CrossRef] [PubMed]
- Dahmardeh, M.; Ali, M.S.M.; Saleh, T.; Hian, T.M.; Moghaddam, M.V.; Nojeh, A.; Takahata, K. High-power MEMS switch enabled by carbon-nanotube contact and shape-memory-alloy actuator. Phys. Status Solidi (a) Appl. Mater. Sci. 2013, 210, 631–638. [Google Scholar] [CrossRef]
- Shuaibu, A.H.; Nabki, F.; Blaquiere, Y. A MEMS Electrothermal Actuator Designed for a DC Switch Aimed at Power Switching Applications and High Voltage Resilience. In Proceedings of the 20th IEEE International Interregional NEWCAS Conference, NEWCAS 2022—Proceedings, Quebec City, QC, Canada, 19–22 June 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022; pp. 317–321. [Google Scholar] [CrossRef]
- Cowen, A.; Hames, G.; Glukh, K.; Hardy, B. PiezoMUMPs™ Design Handbook: A MUMPs® Process; MEMSCAP Inc.: Durham, NC, USA, 2014; 28p, Available online: https://people.eecs.berkeley.edu/~pister/147fa15/Resources/PiezoMUMPs.DR.1.3a.pdf (accessed on 22 August 2025).
- Zhou, L.; Chen, Z.; Cheng, J.; Chen, Q.; Ding, Y.; Xie, H. Investigation of dynamic thermal behaviors of an electrothermal micromirror. Sens. Actuators A Phys. 2017, 263, 269–275. [Google Scholar] [CrossRef]
- Cao, T.; Hu, T.; Zhao, Y. Research status and development trend of MEMS switches: A review. Micromachines 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Dadabhai, F.; Gaspari, F.; Zukotynski, S.; Bland, C. Reduction of silicon dioxide by aluminum in metal-oxide-semiconductor structures. J. Appl. Phys. 1996, 80, 6505–6509. [Google Scholar] [CrossRef]
- Thachil, G.; Nair, D.R.; Dasgupta, A. Design and Fabrication of Reliable Power Efficient Bistable MEMS Switch Using Single Mask Process. J. Microelectromech. Syst. 2020, 29, 1225–1233. [Google Scholar] [CrossRef]
- Sun, Y.C.; Leaker, B.D.; Lee, J.E.; Nam, R.; Naguib, H.E. Shape programming of polymeric based electrothermal actuator (ETA) via artificially induced stress relaxation. Sci. Rep. 2019, 9, 11445. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.J. Comparison of Bosch and cryogenic processes for patterning high aspect ratio features in silicon. In Proceedings of SPIE—The International Society for Optical Engineering; SPIE: Washington, DC, USA, 2001. [Google Scholar]
- Shuaibu, A.H.; Rabih, A.A.S.; Blaquière, Y.; Nabki, F. Laterally Actuated Si-to-Si DC MEMS Switch for Power Switching Applications. Micromachines 2024, 15, 1295. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Actuator length (μm) | 400 |
Actuator width (μm) | |
SOI | 32 |
SiO2 | 11 |
Al | 5 |
Narrow beam width (μm) | 4 |
Contact gap (μm) | 2 |
Footprint (mm2) | 2.92 |
Property | Value | ||
---|---|---|---|
Al | Si | SiO2 | |
Young’s modulus (GPa) | 57 | 170 | 70 |
Density (kg/μm−3) | 19,300 | 2329 | 2150 |
Stress_X,Y (MPa) | 50 | 15 | 0 |
TCE (1/K) | 1.41 × 10−5 | 2.6 × 10−6 | 5.0 × 10−7 |
Thermal conductivity (pW/μmK) | 2.97 × 108 | 1.3 × 108 | 1.4 × 106 |
Specific heat (pJ/kgK) | 1.29 × 1014 | 7.0 × 1014 | 1.0 × 1015 |
Electrical conductivity (pS/μm) | 1.82 × 1013 | 2.0 × 109 | 0 |
Actuation Type | Contact Type | Contact Resistance | Response Time | Ref. |
---|---|---|---|---|
Electrothermal–electrostatic | Cu-coated Si-to-Si | 1.5 Ω | 70 ms | [7] |
Electrothermal | Si-to-Si with Cryo DRIE | 100 | 0.43 ms | [17] |
Electrostatic | Metal-coated Si-to-Si | 1 kΩ | 0.17 ms | [5] |
Electrostatic | Encapsulated Si-to-Si | 35–45 kΩ | - | [6] |
Chevron-type electrothermal | Si-to-Si with Bosch DRIE | 292 Ω | 4 ms | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuaibu, A.H.; Rabih, A.A.S.; Blaquière, Y.; Nabki, F. Push–Push Electrothermal MEMS Actuators with Si-to-Si Contact for DC Power Switching Applications. Micromachines 2025, 16, 977. https://doi.org/10.3390/mi16090977
Shuaibu AH, Rabih AAS, Blaquière Y, Nabki F. Push–Push Electrothermal MEMS Actuators with Si-to-Si Contact for DC Power Switching Applications. Micromachines. 2025; 16(9):977. https://doi.org/10.3390/mi16090977
Chicago/Turabian StyleShuaibu, Abdurrashid Hassan, Almur A. S. Rabih, Yves Blaquière, and Frederic Nabki. 2025. "Push–Push Electrothermal MEMS Actuators with Si-to-Si Contact for DC Power Switching Applications" Micromachines 16, no. 9: 977. https://doi.org/10.3390/mi16090977
APA StyleShuaibu, A. H., Rabih, A. A. S., Blaquière, Y., & Nabki, F. (2025). Push–Push Electrothermal MEMS Actuators with Si-to-Si Contact for DC Power Switching Applications. Micromachines, 16(9), 977. https://doi.org/10.3390/mi16090977