Special Issue "Membrane Technologies for Resource Recovery"

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Engineering and Applications".

Deadline for manuscript submissions: closed (30 November 2020).

Special Issue Editors

Dr. Mònica Reig
Website
Guest Editor
Chemical Engineering Department, Universitat Politècnica de Catalunya (UPC)—Barcelona TECH, Campus Diagonal, Besòs, 08930 Barcelona, Spain
Interests: water treatment; ion-exchange resins; waste to product; ion-exchange membranes; wastewater valorization; adsorption–desorption processes
Special Issues and Collections in MDPI journals
Dr. Xanel Vecino
Website
Guest Editor
Chemical Engineering Department, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia (UPC)-Barcelona TECH, Barcelona, Spain
Interests: bioactive compounds; wastewater treatment; waste valorization; resource recovery; chemical engineering processes; circular economy
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The aim of this Special Issue on “Membrane Technologies for Resource Recovery” is to promote membrane technologies as novel, eco-friendly, low-cost technologies for water treatment and resource recovery. At present, membrane technologies are arising commercially, not only as industrial solutions for water treatment, but also as potential technologies to valorize residues following circular economy frameworks. Thus, resources such as salts, fertilizers, biocompounds, energy, or other added-value products can be obtained from waste by membrane technologies. For this reason, the scope of this Special Issue is wastewater treatment by any kind of membrane technology (nanofiltration, electrodialysis, membrane contactors, reverse osmosis, membrane distillation, forward osmosis, etc.) or a combination of two or more membrane technologies in an integration process train, in order to recover added-value resources. Then, this recovered product or products could be used in the same treatment process, in another process of the same industry, or in another industrial field, closing a circular economy loop. For that, original research articles, reviews, industrial cases, and short communications are welcomed and encouraged.

Dr. Mònica Reig
Dr. Xanel Vecino
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • membrane technology
  • resource recovery
  • process integration
  • circular economy
  • wastewater treatment
  • added-value products
  • industrial application

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Tannery Effluent Treatment by Nanofiltration, Reverse Osmosis and Chitosan Modified Membranes
Membranes 2020, 10(12), 378; https://doi.org/10.3390/membranes10120378 - 28 Nov 2020
Abstract
The objective of this work is to develop an appropriate technology for environmentally sound membrane-based purification of a tannery effluent assuring, simultaneously, the recovery of chromium, considered as the most hazardous inorganic water pollutant extensively used in leather tanning. A comparison between the [...] Read more.
The objective of this work is to develop an appropriate technology for environmentally sound membrane-based purification of a tannery effluent assuring, simultaneously, the recovery of chromium, considered as the most hazardous inorganic water pollutant extensively used in leather tanning. A comparison between the permeate fluxes obtained during treatment of a synthetic tannery effluent through nanofiltration (NF270 and NF90 membranes) and reverse osmosis (BW30 and SW30) membranes was first performed. Then, a dedicated polymeric membrane was prepared by coating chitosan (cs) on a polyethersulfone (PES) microfiltration membrane (cs-PES MFO22) support. The resulting membrane was characterized by Fourier Transforms Infrared Spectroscopy Attenuated Total Reflectance (FTIR-ATR), Emission Scanning Electronic Microscopy (SEM) to confirm the process of surface modification and cross-linking of chitosan with glutaraldehyde. This membrane was found to be highly effective for chromium removal (>99%), which was more than eight times higher in reference to monovalent cations (e.g., Na+ and K+) and more than six times higher in reference to the divalent cations (Mg2+ and Ca2+) studied. The reverse osmosis permeate conforms to local Algerian regulations regarding being discharged directly into the natural environment (in this case, Reghaia Lake) or into urban sewers linked to wastewater biological treatment stations. While the SW30 membrane proved to be the most effective for purification of the tannery effluent, the chitosan modified membrane proved to be appropriate for recovery of chromium from the reverse osmosis concentrate. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Figure 1

Open AccessArticle
Clarification of 1,3-Propanediol Fermentation Broths by Using a Ceramic Fine UF Membrane
Membranes 2020, 10(11), 319; https://doi.org/10.3390/membranes10110319 - 30 Oct 2020
Abstract
This work examined the use of a ceramic fine ultrafiltration (UF) membrane for the pre-treatment of 1,3-propanodiol (1,3-PD) fermentation broths. It has been demonstrated that the membrane used provides obtaining a high-quality, sterile permeate, which can be sequentially separated by other processes such [...] Read more.
This work examined the use of a ceramic fine ultrafiltration (UF) membrane for the pre-treatment of 1,3-propanodiol (1,3-PD) fermentation broths. It has been demonstrated that the membrane used provides obtaining a high-quality, sterile permeate, which can be sequentially separated by other processes such as nanofiltration (NF) and membrane distillation (MD). Special attention was paid to the impact of the operational parameters on the membrane performance. The series of UF experiments under transmembrane pressure (TMP) from 0.1 to 0.4 MPa and feed flow rate (Q) from 200 to 400 dm3/h were performed. Moreover, the impact of the feed pH, in the range from 5 to 10, on the flux was investigated. It has been demonstrated that for fine UF, increasing the TMP is beneficial, and TMP equal to 0.4 MPa and Q of 400 dm3/h ensure the highest flux and its long-term stability. It has been shown that in terms of process efficiency, the most favorable pH of the broths is equal to 9.4. An effective and simple method of membrane cleaning was presented. Finally, the resistance-in-series model was applied to describe resistances that cause flux decline. Results obtained in this study can assist in improving the cost-effectiveness of the UF process of 1,3-PD fermentation broths. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Figure 1

Open AccessArticle
A Novel Ionic Exchange Membrane Crystallizer to Recover Magnesium Hydroxide from Seawater and Industrial Brines
Membranes 2020, 10(11), 303; https://doi.org/10.3390/membranes10110303 - 24 Oct 2020
Abstract
A novel technology, the ion exchange membrane crystallizer (CrIEM), that combines reactive and membrane crystallization, was investigated in order to recover high purity magnesium hydroxide from multi-component artificial and natural solutions. In particular, in a CrIEM reactor, the presence of an anion exchange [...] Read more.
A novel technology, the ion exchange membrane crystallizer (CrIEM), that combines reactive and membrane crystallization, was investigated in order to recover high purity magnesium hydroxide from multi-component artificial and natural solutions. In particular, in a CrIEM reactor, the presence of an anion exchange membrane (AEM), which separates two-compartment containing a saline solution and an alkaline solution, allows the passage of hydroxyl ions from the alkaline to the saline solution compartment, where crystallization of magnesium hydroxide occurs, yet avoiding a direct mixing between the solutions feeding the reactor. This enables the use of low-cost reactants (e.g., Ca(OH)2) without the risk of co-precipitation of by-products and contamination of the final crystals. An experimental campaign was carried out treating two types of feed solution, namely: (1) a waste industrial brine from the Bolesław Śmiały coal mine in Łaziska Górne (Poland) and (2) Mediterranean seawater, collected from the North Sicilian coast (Italy). The CrIEM was tested in a feed and bleed modality in order to operate in a continuous mode. The Mg2+ concentration in the feed solutions ranges from 0.7 to 3.2 g/L. Magnesium recovery efficiencies from 89 up to 100% were reached, while magnesium hydroxide purity between 94% and 98.8% was obtained. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

Open AccessArticle
Separation of Volatile Fatty Acids from Model Anaerobic Effluents Using Various Membrane Technologies
Membranes 2020, 10(10), 252; https://doi.org/10.3390/membranes10100252 - 24 Sep 2020
Cited by 1
Abstract
Effluents of anaerobic processes still contain valuable components, among which volatile fatty acids (VFAs) can be regarded and should be recovered and/or used further in applications such as microbial electrochemical technology to generate energy/energy carriers. To accomplish the separation of VFAs from waste [...] Read more.
Effluents of anaerobic processes still contain valuable components, among which volatile fatty acids (VFAs) can be regarded and should be recovered and/or used further in applications such as microbial electrochemical technology to generate energy/energy carriers. To accomplish the separation of VFAs from waste liquors, various membrane-based solutions applying different transport mechanisms and traits are available, including pressure-driven nanofiltration (NF) and reverse osmosis (RO) which are capable to clarify, fractionate and concentrate salts and organics. Besides, emerging techniques using a membrane such as forward osmosis (FO) and supported liquid membrane (SILM) technology can be taken into consideration for VFA separation. In this work, we evaluate these four various downstream methods (NF, RO, FO and SILM) to determine the best one, comparatively, for enriching VFAs from pH-varied model solutions composed of acetic, butyric and propionic acids in different concentrations. The assessment of the separation experiments was supported by statistical examination to draw more solid conclusions. Accordingly, it turned out that all methods can separate VFAs from the model solution. The highest average retention was achieved by RO (84% at the applied transmembrane pressure of 6 bar), while NF provided the highest permeance (6.5 L/m2hbar) and a high selectivity between different VFAs. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

Open AccessArticle
Effects of Solids Retention Time on the Anaerobic Membrane Bioreactor with Yttria-Based Ceramic Membrane Treating Domestic Wastewater at Ambient Temperature
Membranes 2020, 10(9), 196; https://doi.org/10.3390/membranes10090196 - 21 Aug 2020
Abstract
The effects of solid retention times (SRTs) (100 days, 50 days, 25 days) on the performance, microbial community, and membrane fouling of a lab-scale anaerobic yttria-based ceramic membrane bioreactor (AnCMBR) treating synthetic domestic wastewater at ambient temperature (31.2 ± 2.7 °C) were examined. [...] Read more.
The effects of solid retention times (SRTs) (100 days, 50 days, 25 days) on the performance, microbial community, and membrane fouling of a lab-scale anaerobic yttria-based ceramic membrane bioreactor (AnCMBR) treating synthetic domestic wastewater at ambient temperature (31.2 ± 2.7 °C) were examined. The soluble chemical oxygen demand (SCOD) removal was higher (89.6%) at 25 days SRT compared with 50 days (39.61%) and 100 days (34.3%) SRT. At 100 days SRT, more Bacteroidetes, Firmicutes, and Proteobacteria were present in the microbial community. At 25 days SRT, more Chloroflexi, Synergistetes, and Pastescibacteria emerged, contributing to the stable performance. The SRT of 25 days has resulted in a more stable microbial community compared with 50 days and 100 days SRT. Both bacterial and archaeal community diversities were higher at 25 days SRT, and the specific production of soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were higher at 25 days SRT as well. Consequently, the membrane flux was lower at 25 days SRT with the increased particle size and the enhanced SMPs and EPSs production. Fourier transform infrared spectroscopy analysis (FTIR) and three-dimensional excitation and emission matrix (3D-EEM) analysis showed that protein and SMPs were the major membrane foulants at all SRT stages. In this study, SRT at 25 days was favorable for the stable operation of an AnCMBR treating domestic wastewater at ambient temperature. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

Open AccessArticle
Diffusion Dialysis for Separation of Hydrochloric Acid, Iron and Zinc Ions from Highly Concentrated Pickling Solutions
Membranes 2020, 10(6), 129; https://doi.org/10.3390/membranes10060129 - 24 Jun 2020
Cited by 3
Abstract
Acid recovery from pickling waste solutions is an important step to enhance hot-dip-galvanizing industry process sustainability. Diffusion dialysis (DD) can be used to separate acids and heavy metals (e.g., iron and zinc) from pickling waters, promoting the circular use of such raw materials. [...] Read more.
Acid recovery from pickling waste solutions is an important step to enhance hot-dip-galvanizing industry process sustainability. Diffusion dialysis (DD) can be used to separate acids and heavy metals (e.g., iron and zinc) from pickling waters, promoting the circular use of such raw materials. In the present study, a laboratory scale unit operating in batch and a continuous large scale unit, both equipped with Fumasep anionic exchange membranes, were tested. Results obtained show that zinc and iron concentration affect the HCl recovery in opposite ways. Iron chlorides enhance acid recovery, while zinc chlorides considerably tend to diffuse through the membrane because of negatively charged chloro-complexes formation and slightly reduce the acid diffusion. A multi-components mathematical model, with a time-dependent and distributed-parameters architecture, was adopted enabling the prediction of operations with hydrochloric acid, zinc, and iron metals both in batch and in continuous dialyzers. As a result, a good comparison between model simulations and experiments was achieved in both configurations. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

Open AccessArticle
Electroseparation of Slaughterhouse By-Product: Antimicrobial Peptide Enrichment by pH Modification
Membranes 2020, 10(5), 90; https://doi.org/10.3390/membranes10050090 - 03 May 2020
Cited by 1
Abstract
The fractionation of bioactive peptides from hydrolysate is a main challenge to produce efficient alternative for synthetic additives. In this work, electrodialysis with ultrafiltration membrane (EDUF) was proposed to increase the purity of one antimicrobial peptide from slaughterhouse by-product hydrolysate. This targeted-peptide, α137–141 [...] Read more.
The fractionation of bioactive peptides from hydrolysate is a main challenge to produce efficient alternative for synthetic additives. In this work, electrodialysis with ultrafiltration membrane (EDUF) was proposed to increase the purity of one antimicrobial peptide from slaughterhouse by-product hydrolysate. This targeted-peptide, α137–141 (653 Da, TSKYR), inhibits a large spectrum of microbial growths and delays meat rancidity; therefore, if concentrated, it could be used as food antimicrobial. In this context, three pH values were investigated during EDUF treatment to increase the α137–141 purity: 4.7, 6.5, and 9. pH 9 showed the highest purity increase—75-fold compared to the initial hydrolysate. Although the whole hydrolysate contains more than 100 peptides, only six peptides were recovered at a significant concentration. In this fraction, the α137–141 peptide represented more than 50% of the recovered total peptide concentration. The EDUF α137–141-enriched fraction obtained in this optimized condition would be a promising natural preservative to substitute synthetic additives used to protect food. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

Review

Jump to: Research

Open AccessFeature PaperReview
Forward Osmosis as Concentration Process: Review of Opportunities and Challenges
Membranes 2020, 10(10), 284; https://doi.org/10.3390/membranes10100284 - 14 Oct 2020
Abstract
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as “soft” concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, [...] Read more.
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as “soft” concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Figure 1

Open AccessReview
Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention
Membranes 2020, 10(9), 248; https://doi.org/10.3390/membranes10090248 - 22 Sep 2020
Abstract
Nowadays, integrated microfiltration (MF) membrane systems treatment is becoming widely popular due to its feasibility, process reliability, commercial availability, modularity, relative insensitivity in case of wastewater of various industrial sources as well as raw water treatment and lower operating costs. The well thought [...] Read more.
Nowadays, integrated microfiltration (MF) membrane systems treatment is becoming widely popular due to its feasibility, process reliability, commercial availability, modularity, relative insensitivity in case of wastewater of various industrial sources as well as raw water treatment and lower operating costs. The well thought out, designed and implemented use of membranes can decrease capital cost, reduce chemical usage, and require little maintenance. Due to their resistance to extreme operating conditions and cleaning protocols, ceramic MF membranes are gradually becoming more employed in the drinking water and wastewater treatment industries when compared with organic and polymeric membranes. Regardless of their many advantages, during continuous operation these membranes are susceptible to a fouling process that can be detrimental for successful and continuous plant operations. Chemical and microbial agents including suspended particles, organic matter particulates, microorganisms and heavy metals mainly contribute to fouling, a complex multifactorial phenomenon. Several strategies, such as chemical cleaning protocols, turbulence promoters and backwashing with air or liquids are currently used in the industry, mainly focusing around early prevention and treatment, so that the separation efficiency of MF membranes will not decrease over time. Other strategies include combining coagulation with either inorganic or organic coagulants, with membrane treatment which can potentially enhance pollutants retention and reduce membrane fouling. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

Back to TopTop