Membrane Technologies for Resource Recovery (Volume II)

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Applications".

Deadline for manuscript submissions: closed (31 October 2023) | Viewed by 26497

Special Issue Editors


E-Mail Website
Guest Editor
1. Chemical Engineering Department, School of Industrial Engineering (EEI), University of Vigo, 36310 Vigo, Spain
2. Chemical Engineering Department, Escuela de Ingeniería de Barcelona Este (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, 08930 Barcelona, Spain
Interests: bioactive ingredients; surface-active compounds; natural products; cosmetic formulations; green technology; waste valorization; fermentation; Lactobacillus species; probiotic and prebiotic properties
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Chemical Engineering Department, Universitat Politècnica de Catalunya (UPC)—Barcelona TECH, Campus Diagonal, Besòs, 08930 Barcelona, Spain
Interests: membranes; resource recovery; waste to product; acid water; seawater; nanofiltration; electrodialysis; liquid–liquid membrane contactors; ion-exchange resins; agro-food recovery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The aim of this Special Issue on “Membrane Technologies for Resource Recovery (Volume II)” is to promote membrane technologies as novel, eco-friendly, low-cost technologies for water treatment and resource recovery. Commercially, membrane technologies are currently on the rise not only as industrial solutions for water treatment but also as potential methods of valorizing residues following circular economy frameworks. Thus, they can be used to obtain resources such as salts, fertilizers, biocompounds, energy, or other added-value products from waste.

The scope of this Special Issue is wastewater treatment using membrane technologies (nanofiltration, electrodialysis, membrane contactors, reverse osmosis, membrane distillation, forward osmosis, etc.), or a combination of two or more membrane technologies in an integration process train, in order to recover added-value resources. Then, the recovered product or products could be used in the same treatment process, in another process of the same industry, or in another industrial field, closing a circular economy loop.

Original research articles, reviews, industrial cases, and short communications are welcomed and encouraged.

Dr. Xanel Vecino
Dr. Mònica Reig
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • membrane technology
  • resource recovery
  • process integration
  • circular economy
  • wastewater treatment
  • added-value products
  • industrial application

Related Special Issue

Published Papers (22 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 4351 KiB  
Article
Fly Ash as a Potential Adsorbent for Removing Radionuclides from Aqueous Solutions in an Adsorption-Membrane Assisted Process Compared to Batch Adsorption
by Leon Fuks, Agnieszka Miśkiewicz, Irena Herdzik-Koniecko and Grażyna Zakrzewska-Kołtuniewicz
Membranes 2023, 13(6), 572; https://doi.org/10.3390/membranes13060572 - 31 May 2023
Cited by 3 | Viewed by 988
Abstract
The paper deals with checking the possibility of using fly ash (FA) as a sorbent in the batch adsorption method of removing radionuclides from aqueous solutions. An adsorption-membrane filtration (AMF) hybrid process with a polyether sulfone ultrafiltration membrane with a pore size of [...] Read more.
The paper deals with checking the possibility of using fly ash (FA) as a sorbent in the batch adsorption method of removing radionuclides from aqueous solutions. An adsorption-membrane filtration (AMF) hybrid process with a polyether sulfone ultrafiltration membrane with a pore size of 0.22 μm was also tested as an alternative to the commonly used column-mode technology. In the AMF method, metal ions are bound by the water-insoluble species prior to the membrane filtration of the purified water. Thanks to the easy separation of the metal-loaded sorbent, it is possible to improve water purification parameters using compact installations and reduce operating costs. This work evaluated the influence of such parameters on cationic radionuclide removal efficiency (EM): initial pH and composition of the solution, contact time of the phases, and the FA doses. A method for removing radionuclides, ordinarily present in an anionic form (e.g., TcO4), from water, has also been presented. The results show, that both batch adsorption of radionuclides and adsorption-membrane filtration (AMF) using the FA as an adsorbent can be effectively used for water purification and in the form of a solid directed to long-term storage. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Figure 1

27 pages, 5084 KiB  
Article
Valorization of Anaerobic-Fermentation Liquid Digestates—Membrane-Based Process Development
by Charikleia Tsaridou, Anthoula Karanasiou, Konstantinos V. Plakas and Anastasios J. Karabelas
Membranes 2023, 13(3), 297; https://doi.org/10.3390/membranes13030297 - 1 Mar 2023
Cited by 1 | Viewed by 1646
Abstract
Complete valorization of various wastes and effluents, with significant organic content, remains a great challenge in the pursuit of a circular economy. The approach based on anaerobic fermentation, leading to valuable biogas production, has been broadly accepted and employed as an attractive processing [...] Read more.
Complete valorization of various wastes and effluents, with significant organic content, remains a great challenge in the pursuit of a circular economy. The approach based on anaerobic fermentation, leading to valuable biogas production, has been broadly accepted and employed as an attractive processing scheme. However, despite notable research efforts, complete valorization of the digestates (involving recovery of nutrients/by-products and full recycling/reuse of treated water) requires additional work for sustainable process development. This study aims to make a contribution in this direction by demonstrating a systematic methodology for valorizing the liquid digestate. The proposed membrane-based processing scheme involves UF-membrane pretreatment of the liquid digestate (for sludge separation) and subsequent NF/RO membrane treatment for reuse/recycling of the permeate; the concentrate, enriched in “nutrients” (phosphate and ammonium compounds), can be utilized for soil fertilization, with further conditioning/processing. By performing targeted laboratory experiments and advanced simulations, the membrane-based process was developed to a relatively high technology-readiness level, including a pilot unit design/construction and preliminary testing with satisfactory results. Through pilot testing in industrial environment, further process development and optimization will be pursued, towards practical applications. The demonstrated methodology is also considered appropriate for systematic development of membrane-based processes to valorize/treat a variety of similar effluents. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Figure 1

12 pages, 1924 KiB  
Article
Reclaiming of Amine CO2 Solvent Using Extraction of Heat Stable Salts in Liquid-Liquid Membrane Contactor
by Sergey Shirokikh, Denis Kalmykov, Dmitry Matveev and Stepan Bazhenov
Membranes 2023, 13(2), 230; https://doi.org/10.3390/membranes13020230 - 14 Feb 2023
Cited by 2 | Viewed by 1785
Abstract
Amine CO2 solvents undergo oxidative degradation with the formation of heat stable salts (HSS). These HSS reduce the sorption capacity of amines and lead to intense corrosion of the equipment. In our work, we propose a membrane-supported liquid-liquid extraction of the HSS [...] Read more.
Amine CO2 solvents undergo oxidative degradation with the formation of heat stable salts (HSS). These HSS reduce the sorption capacity of amines and lead to intense corrosion of the equipment. In our work, we propose a membrane-supported liquid-liquid extraction of the HSS from alkanolamines. For this purpose, a hollow fiber membrane contactor was used for the first time. A lab-scale extraction system on the basis of a hollow-fiber liquid-liquid membrane contactor with hollow fiber ultrafiltration polyvinylidenefluoride and polysulfone membranes has been studied. The extraction of the HSS-ions from a 30 wt.% solution of monoethanolamine was carried out using a 0.25–1 M solution of OH-modified methyltrioctylammonium chloride in 1-octanol as an extractant. It has been shown that >90% of HSS ions can be extracted from the alkanolamine solvent within 8 h after extraction. The results obtained confirm the possibility of using membrane extraction with a liquid-liquid membrane contactor for the reclaiming of amine CO2 solvents to increase the general efficiency of carbon dioxide capture. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Figure 1

20 pages, 5971 KiB  
Article
Treatment of Mine Water with Reverse Osmosis and Concentrate Processing to Recover Copper and Deposit Calcium Carbonate
by Alexei Pervov, Htet Zaw Aung and Dmitry Spitsov
Membranes 2023, 13(2), 153; https://doi.org/10.3390/membranes13020153 - 25 Jan 2023
Cited by 3 | Viewed by 2105
Abstract
Mine water usually contains heavy metals and other inorganic and organic pollutants that contaminate water bodies. Reverse osmosis (RO) techniques are capable of producing purified water that meets discharge regulations. However, the problem of RO concentrate disposal and utilization is still not solved. [...] Read more.
Mine water usually contains heavy metals and other inorganic and organic pollutants that contaminate water bodies. Reverse osmosis (RO) techniques are capable of producing purified water that meets discharge regulations. However, the problem of RO concentrate disposal and utilization is still not solved. The well-known zero liquid discharge (ZLD) process provides total concentrate utilization at the power industries but seems unreasonably expensive for the treatment of large amounts of mine water due to required chemical softening and the evaporation of concentrate. In the present article, a new approach to increase the recovery of reverse osmosis and to avoid high operational costs is demonstrated and discussed. The new technique involves radical RO concentrate flow reduction and withdrawal, together with dewatered sludge. The idea to “hide” concentrate in dewatered sludge is proposed and demonstrated during experiments. The article demonstrates results of the conducted experimental program aimed at reduction of volumes of all liquid wastes produced during mine water treatment using a new approach to concentrate it with a cascade of nanofiltration membranes and to reach a TDS value of 110–120 g per liter. The obtained concentrate is mixed with the wet sludge, which is further dewatered and withdrawn together with the dewatered sludge. Experiments are conducted that demonstrate a reduction in calcium in the concentrate due to deposition of calcium carbonate on the “seed crystals” in the circulation mode. Another distinguishing feature of the new technique is the separation of concentrate into two streams containing high concentrations of monovalent ions (sodium and ammonium chlorides) and divalent ions (calcium, magnesium and copper sulphates). Flow diagrams of the processes are presented to demonstrate the water treatment technique used to produce deionized water and two types of sludges: sludge after clarification and sludge after calcium carbonate deposition. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Figure 1

23 pages, 6332 KiB  
Article
Direct Membrane Filtration of Municipal Wastewater: Studying the Most Suitable Conditions for Minimizing Fouling Rate in Commercial Porous Membranes at Demonstration Scale
by Pau Sanchis-Perucho, Daniel Aguado, José Ferrer, Aurora Seco and Ángel Robles
Membranes 2023, 13(1), 99; https://doi.org/10.3390/membranes13010099 - 12 Jan 2023
Cited by 5 | Viewed by 2546
Abstract
This study aimed to evaluate the feasibility of applying a commercial porous membrane to direct filtration of municipal wastewater. The effects of membrane pore size (MF and UF), treated influent (raw wastewater and the primary settler effluent of a municipal wastewater treatment plant) [...] Read more.
This study aimed to evaluate the feasibility of applying a commercial porous membrane to direct filtration of municipal wastewater. The effects of membrane pore size (MF and UF), treated influent (raw wastewater and the primary settler effluent of a municipal wastewater treatment plant) and operating solids concentration (about 1 and 2.6 g L−1) were evaluated on a demonstration plant. Filtration periods of 2–8 h were achieved when using the MF membrane, while these increased to 34–69 days with the UF membrane. This wide difference was due to severe fouling when operating the MF membrane, which was dramatically reduced by the UF membrane. Use of raw wastewater and higher solids concentration showed a significant benefit in the filtration performance when using the UF module. The physical fouling control strategies tested (air sparging and backwashing) proved to be ineffective in controlling UF membrane fouling, although these strategies had a significant impact on MF membrane fouling, extending the operating period from some hours to 5–6 days. The fouling evaluation showed that a cake layer seemed to be the predominant reversible fouling mechanism during each independent filtration cycle. However, as continuous filtration advanced, a large accumulation of irreversible fouling appeared, which could have been related to intermediate/complete pore blocking in the case of the MF membrane, while it could have been produced by standard pore blocking in the case of the UF membrane. Organic matter represented more than 70% of this irreversible fouling in all the experimental conditions evaluated. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Figure 1

24 pages, 8791 KiB  
Article
The Application of the Nanofiltration Membrane NF270 for Separation of Fermentation Broths
by Wirginia Tomczak
Membranes 2022, 12(12), 1263; https://doi.org/10.3390/membranes12121263 - 14 Dec 2022
Cited by 5 | Viewed by 2423
Abstract
The potential for nanofiltration (NF) in removing both relatively low molecular weight (MW) organic species and charged solutes from complex media is noteworthy. The main aim of the current work was to improve understanding of the separation mechanisms of fermentation broths components in [...] Read more.
The potential for nanofiltration (NF) in removing both relatively low molecular weight (MW) organic species and charged solutes from complex media is noteworthy. The main aim of the current work was to improve understanding of the separation mechanisms of fermentation broths components in the NF process. For this purpose, the experimental investigations were performed using the commercial polyamide NF270 membrane. The feed solution was ultrafiltered 1,3-propanediol (1,3-PD) broths. The separation results were analyzed and discussed in light of the detailed characteristics of both the membrane and the broth components. It has been noted that the membrane ensured the complete 1,3-PD permeability and significant rejection of some feed components. A thorough analysis showed that the retention of carboxylic acids was based on both the Donnan effect and sieve mechanism, according to the following order: succinic acid > lactic acid > acetic acid > formic acid. Indeed, acids retention increased with increasing charged acids ions valency, Stokes radius (rS) as well as MW, and decreasing diffusion coefficient (D). In turn, for ions, the following orders retention was determined: SO42− = PO43− > Cl and Ca2+ > Na+ > NH4+ ~ K+. It indicated that the ions retention increased with increasing ions charge density, hydrated radius (rH), and hydration energy (Eh). It showed that the separation of the ions was based on the Donnan exclusion, sieving effect, and dielectric exclusion. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Figure 1

12 pages, 2376 KiB  
Article
Modelling of Fractionated Condensation for Off-Flavours Reduction from Red Wine Fermentation Headspace
by Maria João Pereira, António Ferreira, Carla Brazinha and João Crespo
Membranes 2022, 12(9), 875; https://doi.org/10.3390/membranes12090875 - 10 Sep 2022
Viewed by 1485
Abstract
A mathematical model of fractionated condensation is proposed for predicting the recovery and fractionation of target aromas from red wine fermentation headspaces in order to remove off-flavours. The applicability of the model is assessed for two different alternative processes: fractionated condensation and vapour [...] Read more.
A mathematical model of fractionated condensation is proposed for predicting the recovery and fractionation of target aromas from red wine fermentation headspaces in order to remove off-flavours. The applicability of the model is assessed for two different alternative processes: fractionated condensation and vapour permeation–fractionated condensation. The aromas of the headspace of red wine fermentation are commonly lost through the fermenter venting system and are enhanced by the stripping effect of the produced CO2. To mimic the operating conditions during the red wine fermentation, all experiments were performed at 30 °C with a red wine model solution containing relevant red wine aromas, the cosolvent ethanol at representative concentrations, and CO2. Both studied processes allow for a good recovery of esters in the 2nd condenser, with over 80% of ethyl acetate and isoamyl acetate recovery when using vapour permeation–fractionated condensation and a recovery of 84–96% of all esters when using fractionated condensation. However, only the integrated process of vapour permeation–fractionated condensation achieves a significant decrease in the amount of ethyl phenols (off-flavours compounds) in the 1st condenser, above 50%, as expected due to the use of an organophilic membrane. The developed model was validated experimentally for the integrated process, proving to be a highly valuable tool for the prediction of aroma fractionation, aiming at the removal of off-flavours. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Graphical abstract

16 pages, 1759 KiB  
Article
Application of Vibrating Reverse Osmosis Technology for Nutrient Recovery from Pig Slurry in a Circular Economy Model
by Esther Vega, Lidia Paredes, Evan A. N. Marks, Berta Singla, Omar Castaño-Sánchez, Carme Casas, Rosa Vilaplana, Mabel Mora, Sergio Ponsá and Laia Llenas
Membranes 2022, 12(9), 848; https://doi.org/10.3390/membranes12090848 - 30 Aug 2022
Cited by 3 | Viewed by 1890
Abstract
The rapid growth of the livestock sector in some areas of Europe has caused an imbalance between the generation of livestock manure and the availability of agricultural soil for its direct application as a fertilizer. Since the transport of pig slurry to other [...] Read more.
The rapid growth of the livestock sector in some areas of Europe has caused an imbalance between the generation of livestock manure and the availability of agricultural soil for its direct application as a fertilizer. Since the transport of pig slurry to other areas with nutrient-deficient soils is costly from an economic point of view due to its high water content, the application of new technologies for the concentration of this waste is considered key for reducing management costs. Consequently, the main objective of this study was to demonstrate the potential of vibratory shear enhanced processing (VSEP) operated with reverse osmosis membranes to recover nutrients from the liquid fractions of pig slurry (LF-pig slurry) and digestate (LF-digestate) and obtain concentrated fertilizing products. Use of the VSEP unit permitted reductions in the water contents of the LF-pig slurry and LF-digestate, around 77% and 67%, respectively. Both VSEP concentrates were characterized by their significant nutrient contents and showed a nitrogen fertilizer replacement value similar to that of mineral fertilizer as demonstrated in a barley crop pot-test, although the salinity of the digestate concentrate was identified as a key limitation, negatively impacting the agronomic yield of the test crop. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Graphical abstract

14 pages, 1171 KiB  
Article
Removal of Diverse and Abundant ARGs by MF-NF Process from Pig Manure and Digestate
by Prantik Samanta, Harald Horn and Florencia Saravia
Membranes 2022, 12(7), 661; https://doi.org/10.3390/membranes12070661 - 27 Jun 2022
Cited by 2 | Viewed by 1536
Abstract
Antimicrobial resistances are emerging as one main threat to worldwide human health and are expected to kill 10 million people by 2050. Intensive livestock husbandry, along with biogas digestate, are considered as one of the biggest ARG reservoirs. Despite major concerns, little information [...] Read more.
Antimicrobial resistances are emerging as one main threat to worldwide human health and are expected to kill 10 million people by 2050. Intensive livestock husbandry, along with biogas digestate, are considered as one of the biggest ARG reservoirs. Despite major concerns, little information is available on the diversity and abundance of various ARGs in small to large scale pig farms and biogas digestate slurry in Germany, followed by their consequent removal using microfiltration (MF)–nanofiltration (NF) process. Here, we report the identification and quantification of 189 ARGs in raw manure and digestate samples, out of which 66 ARGs were shared among manures and 53 ARGs were shared among both manure and digestate samples. The highest reported total ARG copy numbers in a single manure sampling site was 1.15 × 108 copies/100 µL. In addition, we found the absolute concentrations of 37 ARGs were above 105 copies/100 μL. Filtration results showed that the highly concentrated ARGs (except aminoglycoside resistance ARGs) in feed presented high log retention value (LRV) from 3 to as high as 5 after the MF-NF process. Additionally, LRV below 2 was noticed where the initial absolute ARG concentrations were ≤103 copies/100 μL. Therefore, ARG removal was found to be directly proportional to its initial concentration in the raw manure and in digestate samples. Consequently, some ARGs (tetH, strB) can still be found within the permeate of NF with up to 104 copies/100 μL. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Graphical abstract

17 pages, 6743 KiB  
Article
Liquid Membranes for Efficient Recovery of Phenolic Compounds Such as Vanillin and Catechol
by Sandra Pavón, Luisa Blaesing, Annika Jahn, Ines Aubel and Martin Bertau
Membranes 2021, 11(1), 20; https://doi.org/10.3390/membranes11010020 - 28 Dec 2020
Cited by 15 | Viewed by 2642
Abstract
Investigations were carried out to obtain different lignin monomers such as vanillin and catechol as efficiently as possible, to prevent side reactions e.g., during lignin degradation. Therefore, extraction experiments were performed to determine the influence of parameters such as initial pH in the [...] Read more.
Investigations were carried out to obtain different lignin monomers such as vanillin and catechol as efficiently as possible, to prevent side reactions e.g., during lignin degradation. Therefore, extraction experiments were performed to determine the influence of parameters such as initial pH in the aqueous phase, organic phases containing alcohols or solvating extractants, and monomer concentrations. Cyanex 923 (Cy923) and tri-n-butyl-phosphat (TBP) diluted in kerosene were the organic phases chosen to evaluate the transport of vanillin because of their high efficiencies (>76.8%) and suitability in membrane technologies. The most efficient vanillin transport was accomplished with Cy923, as > 90% of vanillin was transferred after 5 h. However, the permeability coefficient at carrier concentration of > 0.48 mol/L was influenced not only by the diffusion but also by the organic mixture viscosity. Thus, this concentration was used in the membrane experiment containing a mixture of vanillin and catechol in the feed phase. Catechol was transported about 7% faster to the receiving phase than vanillin, presumably due to its chemical structure. Side reactions were avoided using the current liquid membrane set-up, allowing the further industrial application of an entire process, which, e.g., recovers vanillin from enzymatic lignin conversion by membrane technology. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Figure 1

14 pages, 13949 KiB  
Article
Scale-Up of Membrane-Based Zinc Recovery from Spent Pickling Acids of Hot-Dip Galvanizing
by Andrea Arguillarena, María Margallo, Axel Arruti-Fernández, Javier Pinedo, Pedro Gómez and Ane Urtiaga
Membranes 2020, 10(12), 444; https://doi.org/10.3390/membranes10120444 - 21 Dec 2020
Cited by 15 | Viewed by 2921
Abstract
Zinc recovery from spent pickling acids (SPAs) can play an important role in achieving a circular economy in the galvanizing industry. This work evaluates the scale-up of membrane-based solvent extraction technology aimed at the selective separation of zinc from industrial SPAs as a [...] Read more.
Zinc recovery from spent pickling acids (SPAs) can play an important role in achieving a circular economy in the galvanizing industry. This work evaluates the scale-up of membrane-based solvent extraction technology aimed at the selective separation of zinc from industrial SPAs as a purification step prior to zinc electrowinning (EW). The experiments were carried out at a pilot scale treating SPAs batches of 57 to 91 L in a non-dispersive solvent extraction (NDSX) configuration that simultaneously performed the extraction and backextraction steps. The pilot plant was equipped with four hollow fiber contactors and 80 m2 of total membrane area, which was approximately 30 times higher than previous bench-scale studies. Tributylphosphate diluted in Shellsol D70 and tap water were used as organic and stripping agents, respectively. Starting with SPAs with high Zn (71.7 ± 4.3 g·L−1) and Fe (82.9 ± 5.0 g·L−1) content, the NDSX process achieved a stripping phase with 55.7 g Zn·L−1 and only 3.2 g Fe·L−1. Other minor metals were not transferred, providing the purified zinc stripping with better quality for the next EW step. A series of five consecutive pilot-scale experiments showed the reproducibility of results, which is an indicator of the stability of the organic extractant and its adequate regeneration in the NDSX operation. Zinc mass transfer fluxes were successfully correlated to zinc concentration in the feed SPA phase, together with data extracted from previous laboratory-scale experiments, allowing us to obtain the design parameter that will enable the leap to the industrial scale. Therefore, the results herein presented demonstrate the NDSX technology in an industrially relevant environment equivalent to TRL 6, which is an essential progress to increase zinc metal resources in the galvanizing sector. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Figure 1

20 pages, 3276 KiB  
Article
Tannery Effluent Treatment by Nanofiltration, Reverse Osmosis and Chitosan Modified Membranes
by Asmaa Zakmout, Fatma Sadi, Carla A. M. Portugal, João G. Crespo and Svetlozar Velizarov
Membranes 2020, 10(12), 378; https://doi.org/10.3390/membranes10120378 - 28 Nov 2020
Cited by 30 | Viewed by 3340
Abstract
The objective of this work is to develop an appropriate technology for environmentally sound membrane-based purification of a tannery effluent assuring, simultaneously, the recovery of chromium, considered as the most hazardous inorganic water pollutant extensively used in leather tanning. A comparison between the [...] Read more.
The objective of this work is to develop an appropriate technology for environmentally sound membrane-based purification of a tannery effluent assuring, simultaneously, the recovery of chromium, considered as the most hazardous inorganic water pollutant extensively used in leather tanning. A comparison between the permeate fluxes obtained during treatment of a synthetic tannery effluent through nanofiltration (NF270 and NF90 membranes) and reverse osmosis (BW30 and SW30) membranes was first performed. Then, a dedicated polymeric membrane was prepared by coating chitosan (cs) on a polyethersulfone (PES) microfiltration membrane (cs-PES MFO22) support. The resulting membrane was characterized by Fourier Transforms Infrared Spectroscopy Attenuated Total Reflectance (FTIR-ATR), Emission Scanning Electronic Microscopy (SEM) to confirm the process of surface modification and cross-linking of chitosan with glutaraldehyde. This membrane was found to be highly effective for chromium removal (>99%), which was more than eight times higher in reference to monovalent cations (e.g., Na+ and K+) and more than six times higher in reference to the divalent cations (Mg2+ and Ca2+) studied. The reverse osmosis permeate conforms to local Algerian regulations regarding being discharged directly into the natural environment (in this case, Reghaia Lake) or into urban sewers linked to wastewater biological treatment stations. While the SW30 membrane proved to be the most effective for purification of the tannery effluent, the chitosan modified membrane proved to be appropriate for recovery of chromium from the reverse osmosis concentrate. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Figure 1

21 pages, 2367 KiB  
Article
Clarification of 1,3-Propanediol Fermentation Broths by Using a Ceramic Fine UF Membrane
by Wirginia Tomczak and Marek Gryta
Membranes 2020, 10(11), 319; https://doi.org/10.3390/membranes10110319 - 30 Oct 2020
Cited by 15 | Viewed by 2380
Abstract
This work examined the use of a ceramic fine ultrafiltration (UF) membrane for the pre-treatment of 1,3-propanodiol (1,3-PD) fermentation broths. It has been demonstrated that the membrane used provides obtaining a high-quality, sterile permeate, which can be sequentially separated by other processes such [...] Read more.
This work examined the use of a ceramic fine ultrafiltration (UF) membrane for the pre-treatment of 1,3-propanodiol (1,3-PD) fermentation broths. It has been demonstrated that the membrane used provides obtaining a high-quality, sterile permeate, which can be sequentially separated by other processes such as nanofiltration (NF) and membrane distillation (MD). Special attention was paid to the impact of the operational parameters on the membrane performance. The series of UF experiments under transmembrane pressure (TMP) from 0.1 to 0.4 MPa and feed flow rate (Q) from 200 to 400 dm3/h were performed. Moreover, the impact of the feed pH, in the range from 5 to 10, on the flux was investigated. It has been demonstrated that for fine UF, increasing the TMP is beneficial, and TMP equal to 0.4 MPa and Q of 400 dm3/h ensure the highest flux and its long-term stability. It has been shown that in terms of process efficiency, the most favorable pH of the broths is equal to 9.4. An effective and simple method of membrane cleaning was presented. Finally, the resistance-in-series model was applied to describe resistances that cause flux decline. Results obtained in this study can assist in improving the cost-effectiveness of the UF process of 1,3-PD fermentation broths. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Figure 1

14 pages, 3385 KiB  
Article
A Novel Ionic Exchange Membrane Crystallizer to Recover Magnesium Hydroxide from Seawater and Industrial Brines
by Daniele La Corte, Fabrizio Vassallo, Andrea Cipollina, Marian Turek, Alessandro Tamburini and Giorgio Micale
Membranes 2020, 10(11), 303; https://doi.org/10.3390/membranes10110303 - 24 Oct 2020
Cited by 20 | Viewed by 3263
Abstract
A novel technology, the ion exchange membrane crystallizer (CrIEM), that combines reactive and membrane crystallization, was investigated in order to recover high purity magnesium hydroxide from multi-component artificial and natural solutions. In particular, in a CrIEM reactor, the presence of an anion exchange [...] Read more.
A novel technology, the ion exchange membrane crystallizer (CrIEM), that combines reactive and membrane crystallization, was investigated in order to recover high purity magnesium hydroxide from multi-component artificial and natural solutions. In particular, in a CrIEM reactor, the presence of an anion exchange membrane (AEM), which separates two-compartment containing a saline solution and an alkaline solution, allows the passage of hydroxyl ions from the alkaline to the saline solution compartment, where crystallization of magnesium hydroxide occurs, yet avoiding a direct mixing between the solutions feeding the reactor. This enables the use of low-cost reactants (e.g., Ca(OH)2) without the risk of co-precipitation of by-products and contamination of the final crystals. An experimental campaign was carried out treating two types of feed solution, namely: (1) a waste industrial brine from the Bolesław Śmiały coal mine in Łaziska Górne (Poland) and (2) Mediterranean seawater, collected from the North Sicilian coast (Italy). The CrIEM was tested in a feed and bleed modality in order to operate in a continuous mode. The Mg2+ concentration in the feed solutions ranges from 0.7 to 3.2 g/L. Magnesium recovery efficiencies from 89 up to 100% were reached, while magnesium hydroxide purity between 94% and 98.8% was obtained. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

15 pages, 2366 KiB  
Article
Separation of Volatile Fatty Acids from Model Anaerobic Effluents Using Various Membrane Technologies
by Áron Bóna, Péter Bakonyi, Ildikó Galambos, Katalin Bélafi-Bakó and Nándor Nemestóthy
Membranes 2020, 10(10), 252; https://doi.org/10.3390/membranes10100252 - 24 Sep 2020
Cited by 27 | Viewed by 3685
Abstract
Effluents of anaerobic processes still contain valuable components, among which volatile fatty acids (VFAs) can be regarded and should be recovered and/or used further in applications such as microbial electrochemical technology to generate energy/energy carriers. To accomplish the separation of VFAs from waste [...] Read more.
Effluents of anaerobic processes still contain valuable components, among which volatile fatty acids (VFAs) can be regarded and should be recovered and/or used further in applications such as microbial electrochemical technology to generate energy/energy carriers. To accomplish the separation of VFAs from waste liquors, various membrane-based solutions applying different transport mechanisms and traits are available, including pressure-driven nanofiltration (NF) and reverse osmosis (RO) which are capable to clarify, fractionate and concentrate salts and organics. Besides, emerging techniques using a membrane such as forward osmosis (FO) and supported liquid membrane (SILM) technology can be taken into consideration for VFA separation. In this work, we evaluate these four various downstream methods (NF, RO, FO and SILM) to determine the best one, comparatively, for enriching VFAs from pH-varied model solutions composed of acetic, butyric and propionic acids in different concentrations. The assessment of the separation experiments was supported by statistical examination to draw more solid conclusions. Accordingly, it turned out that all methods can separate VFAs from the model solution. The highest average retention was achieved by RO (84% at the applied transmembrane pressure of 6 bar), while NF provided the highest permeance (6.5 L/m2hbar) and a high selectivity between different VFAs. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

18 pages, 3041 KiB  
Article
Effects of Solids Retention Time on the Anaerobic Membrane Bioreactor with Yttria-Based Ceramic Membrane Treating Domestic Wastewater at Ambient Temperature
by Rathmalgodage Thejani Nilusha, Dawei Yu, Junya Zhang and Yuansong Wei
Membranes 2020, 10(9), 196; https://doi.org/10.3390/membranes10090196 - 21 Aug 2020
Cited by 10 | Viewed by 2456
Abstract
The effects of solid retention times (SRTs) (100 days, 50 days, 25 days) on the performance, microbial community, and membrane fouling of a lab-scale anaerobic yttria-based ceramic membrane bioreactor (AnCMBR) treating synthetic domestic wastewater at ambient temperature (31.2 ± 2.7 °C) were examined. [...] Read more.
The effects of solid retention times (SRTs) (100 days, 50 days, 25 days) on the performance, microbial community, and membrane fouling of a lab-scale anaerobic yttria-based ceramic membrane bioreactor (AnCMBR) treating synthetic domestic wastewater at ambient temperature (31.2 ± 2.7 °C) were examined. The soluble chemical oxygen demand (SCOD) removal was higher (89.6%) at 25 days SRT compared with 50 days (39.61%) and 100 days (34.3%) SRT. At 100 days SRT, more Bacteroidetes, Firmicutes, and Proteobacteria were present in the microbial community. At 25 days SRT, more Chloroflexi, Synergistetes, and Pastescibacteria emerged, contributing to the stable performance. The SRT of 25 days has resulted in a more stable microbial community compared with 50 days and 100 days SRT. Both bacterial and archaeal community diversities were higher at 25 days SRT, and the specific production of soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were higher at 25 days SRT as well. Consequently, the membrane flux was lower at 25 days SRT with the increased particle size and the enhanced SMPs and EPSs production. Fourier transform infrared spectroscopy analysis (FTIR) and three-dimensional excitation and emission matrix (3D-EEM) analysis showed that protein and SMPs were the major membrane foulants at all SRT stages. In this study, SRT at 25 days was favorable for the stable operation of an AnCMBR treating domestic wastewater at ambient temperature. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

17 pages, 18670 KiB  
Article
Diffusion Dialysis for Separation of Hydrochloric Acid, Iron and Zinc Ions from Highly Concentrated Pickling Solutions
by Rosa Gueccia, Alba Ruiz Aguirre, Serena Randazzo, Andrea Cipollina and Giorgio Micale
Membranes 2020, 10(6), 129; https://doi.org/10.3390/membranes10060129 - 24 Jun 2020
Cited by 28 | Viewed by 5120
Abstract
Acid recovery from pickling waste solutions is an important step to enhance hot-dip-galvanizing industry process sustainability. Diffusion dialysis (DD) can be used to separate acids and heavy metals (e.g., iron and zinc) from pickling waters, promoting the circular use of such raw materials. [...] Read more.
Acid recovery from pickling waste solutions is an important step to enhance hot-dip-galvanizing industry process sustainability. Diffusion dialysis (DD) can be used to separate acids and heavy metals (e.g., iron and zinc) from pickling waters, promoting the circular use of such raw materials. In the present study, a laboratory scale unit operating in batch and a continuous large scale unit, both equipped with Fumasep anionic exchange membranes, were tested. Results obtained show that zinc and iron concentration affect the HCl recovery in opposite ways. Iron chlorides enhance acid recovery, while zinc chlorides considerably tend to diffuse through the membrane because of negatively charged chloro-complexes formation and slightly reduce the acid diffusion. A multi-components mathematical model, with a time-dependent and distributed-parameters architecture, was adopted enabling the prediction of operations with hydrochloric acid, zinc, and iron metals both in batch and in continuous dialyzers. As a result, a good comparison between model simulations and experiments was achieved in both configurations. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

14 pages, 2058 KiB  
Article
Electroseparation of Slaughterhouse By-Product: Antimicrobial Peptide Enrichment by pH Modification
by Rémi Przybylski, Laurent Bazinet, Loubna Firdaous, Mostafa Kouach, Jean-François Goossens, Pascal Dhulster and Naïma Nedjar-Arroume
Membranes 2020, 10(5), 90; https://doi.org/10.3390/membranes10050090 - 3 May 2020
Cited by 14 | Viewed by 3384
Abstract
The fractionation of bioactive peptides from hydrolysate is a main challenge to produce efficient alternative for synthetic additives. In this work, electrodialysis with ultrafiltration membrane (EDUF) was proposed to increase the purity of one antimicrobial peptide from slaughterhouse by-product hydrolysate. This targeted-peptide, α137–141 [...] Read more.
The fractionation of bioactive peptides from hydrolysate is a main challenge to produce efficient alternative for synthetic additives. In this work, electrodialysis with ultrafiltration membrane (EDUF) was proposed to increase the purity of one antimicrobial peptide from slaughterhouse by-product hydrolysate. This targeted-peptide, α137–141 (653 Da, TSKYR), inhibits a large spectrum of microbial growths and delays meat rancidity; therefore, if concentrated, it could be used as food antimicrobial. In this context, three pH values were investigated during EDUF treatment to increase the α137–141 purity: 4.7, 6.5, and 9. pH 9 showed the highest purity increase—75-fold compared to the initial hydrolysate. Although the whole hydrolysate contains more than 100 peptides, only six peptides were recovered at a significant concentration. In this fraction, the α137–141 peptide represented more than 50% of the recovered total peptide concentration. The EDUF α137–141-enriched fraction obtained in this optimized condition would be a promising natural preservative to substitute synthetic additives used to protect food. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

Review

Jump to: Research

20 pages, 2759 KiB  
Review
Recovery of Metals from Wastewater—State-of-the-Art Solutions with the Support of Membrane Technology
by Katarzyna Staszak and Karolina Wieszczycka
Membranes 2023, 13(1), 114; https://doi.org/10.3390/membranes13010114 - 16 Jan 2023
Cited by 5 | Viewed by 3172
Abstract
This paper discusses the most important research trends in the recovery of metals from industrial wastewater using membrane techniques in recent years. Particular attention is paid to the preparation of new membranes with the required filtration and separation properties. At the same time, [...] Read more.
This paper discusses the most important research trends in the recovery of metals from industrial wastewater using membrane techniques in recent years. Particular attention is paid to the preparation of new membranes with the required filtration and separation properties. At the same time, possible future applications are highlighted. The aspects discussed are divided into metals in order to clearly and comprehensibly list the most optimal solutions depending on the composition of the wastewater and the possibility of recovering valuable components (metalloids, heavy metals, and platinum group metals). It is shown that it is possible to effectively remove metals from industrial wastewater by appropriate membrane preparation (up to ~100%), including the incorporation of functional groups, nanoparticles on the membrane surface. However, it is also worth noting the development of hybrid techniques, in which membrane techniques are one of the elements of an effective purification procedure. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Graphical abstract

49 pages, 6092 KiB  
Review
Membrane Technologies for Nitrogen Recovery from Waste Streams: Scientometrics and Technical Analysis
by Raed A. Al-Juboori, Muayad Al-Shaeli, Saif Al Aani, Daniel Johnson and Nidal Hilal
Membranes 2023, 13(1), 15; https://doi.org/10.3390/membranes13010015 - 22 Dec 2022
Cited by 8 | Viewed by 5581
Abstract
The concerns regarding the reactive nitrogen levels exceeding the planetary limits are well documented in the literature. A large portion of anthropogenic nitrogen ends in wastewater. Nitrogen removal in typical wastewater treatment processes consumes a considerable amount of energy. Nitrogen recovery can help [...] Read more.
The concerns regarding the reactive nitrogen levels exceeding the planetary limits are well documented in the literature. A large portion of anthropogenic nitrogen ends in wastewater. Nitrogen removal in typical wastewater treatment processes consumes a considerable amount of energy. Nitrogen recovery can help in saving energy and meeting the regulatory discharge limits. This has motivated researchers and industry professionals alike to devise effective nitrogen recovery systems. Membrane technologies form a fundamental part of these systems. This work presents a thorough overview of the subject using scientometric analysis and presents an evaluation of membrane technologies guided by literature findings. The focus of nitrogen recovery research has shifted over time from nutrient concentration to the production of marketable products using improved membrane materials and designs. A practical approach for selecting hybrid systems based on the recovery goals has been proposed. A comparison between membrane technologies in terms of energy requirements, recovery efficiency, and process scale showed that gas permeable membrane (GPM) and its combination with other technologies are the most promising recovery techniques and they merit further industry attention and investment. Recommendations for potential future search trends based on industry and end users’ needs have also been proposed. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Graphical abstract

40 pages, 1800 KiB  
Review
Forward Osmosis as Concentration Process: Review of Opportunities and Challenges
by Gaetan Blandin, Federico Ferrari, Geoffroy Lesage, Pierre Le-Clech, Marc Héran and Xavier Martinez-Lladó
Membranes 2020, 10(10), 284; https://doi.org/10.3390/membranes10100284 - 14 Oct 2020
Cited by 51 | Viewed by 8867
Abstract
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as “soft” concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, [...] Read more.
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as “soft” concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Figure 1

34 pages, 3611 KiB  
Review
Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention
by Mohammed Wali Hakami, Abdullah Alkhudhiri, Sirhan Al-Batty, Myrto-Panagiota Zacharof, Jon Maddy and Nidal Hilal
Membranes 2020, 10(9), 248; https://doi.org/10.3390/membranes10090248 - 22 Sep 2020
Cited by 68 | Viewed by 12131
Abstract
Nowadays, integrated microfiltration (MF) membrane systems treatment is becoming widely popular due to its feasibility, process reliability, commercial availability, modularity, relative insensitivity in case of wastewater of various industrial sources as well as raw water treatment and lower operating costs. The well thought [...] Read more.
Nowadays, integrated microfiltration (MF) membrane systems treatment is becoming widely popular due to its feasibility, process reliability, commercial availability, modularity, relative insensitivity in case of wastewater of various industrial sources as well as raw water treatment and lower operating costs. The well thought out, designed and implemented use of membranes can decrease capital cost, reduce chemical usage, and require little maintenance. Due to their resistance to extreme operating conditions and cleaning protocols, ceramic MF membranes are gradually becoming more employed in the drinking water and wastewater treatment industries when compared with organic and polymeric membranes. Regardless of their many advantages, during continuous operation these membranes are susceptible to a fouling process that can be detrimental for successful and continuous plant operations. Chemical and microbial agents including suspended particles, organic matter particulates, microorganisms and heavy metals mainly contribute to fouling, a complex multifactorial phenomenon. Several strategies, such as chemical cleaning protocols, turbulence promoters and backwashing with air or liquids are currently used in the industry, mainly focusing around early prevention and treatment, so that the separation efficiency of MF membranes will not decrease over time. Other strategies include combining coagulation with either inorganic or organic coagulants, with membrane treatment which can potentially enhance pollutants retention and reduce membrane fouling. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery)
Show Figures

Graphical abstract

Back to TopTop