Advances in Switched Systems and Control Theory: Theory and Application

A special issue of Mathematics (ISSN 2227-7390). This special issue belongs to the section "E2: Control Theory and Mechanics".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 8087

Special Issue Editors


E-Mail Website
Guest Editor
School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
Interests: switched systems; stochastic systems; adaptive control; neural network; fuzzy control

E-Mail Website
Guest Editor
School of Mathematics, Harbin Institute of Technology, Harbin 150001, China
Interests: differential equations and applications; complex systems and complex networks; distributed parameter systems; unmanned system control

E-Mail Website
Guest Editor
College of Science, Liaoning University of Technology, Jinzhou 121001, China
Interests: adaptive fuzzy control; fault-tolerant control; event-triggered control; nonlinear systems
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China
Interests: information physical systems; DoS attacks; artificial intelligence
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Switched systems are a class of hybrid systems that involve interacting discrete-event and continuous-variable dynamics. They are important in applications in engine systems, cyber-physical systems, robotics, and traffic management, and have gained considerable interest in the control theory, computer-aided verification, and artificial intelligence communities. This has resulted in a large and growing body of research work on a diverse array of issues, including stability analysis, tracking control, distributed control, and others.

At present, switched systems have made new progress in many new research directions, but also face new challenges. For example, multi-agent systems (MASs) are one of the most important parts of artificial intelligence, which have a strong exploring value in many practical engineering applications. However, we found that there is little literature on switched nonlinear MASs with complicated dynamics, because designing the appropriate controllers and achieving the relevant objectives is quite difficult. Therefore, how to design a control strategy to solve the relevant control problems for switched nonlinear MASs is an interesting topic.

This Special Issue collects papers with the aim to uncover and exploit the latest research progress in switched systems. Topics of interest include, but are not limited to: robust stabilization of switched systems (such as switched stochastic systems, switched cyber-physical systems and so on); stability/performance/robustness analysis of switched control systems; enhancing the controller’s reliability through event-triggered/hybrid-triggered techniques; optimization of reliable control design using machine learning algorithms.

Prof. Dr. Ben Niu
Prof. Dr. Yonggui Kao
Prof. Dr. Yuanxin Li
Prof. Dr. Xin Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • switched system
  • switched nonlinear MASs
  • stochastic switched systems
  • cyber-physical systems
  • consensus tracking control
  • intelligent control technique
  • adaptive control
  • network attacks

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 467 KiB  
Article
Practical Fixed-Time Tracking Control for Strict-Feedback Nonlinear Systems with Flexible Prescribed Performance
by Xing Wang, Yongzhi Wang, Yulong Ji, Ben Niu and Jianing Hu
Mathematics 2025, 13(13), 2213; https://doi.org/10.3390/math13132213 - 7 Jul 2025
Viewed by 207
Abstract
This paper addresses the issue of practical fixed-time tracking control for a class of strict-feedback nonlinear systems subject to external disturbances, while ensuring flexible prescribed performance. First, a fixed-time disturbance observer is designed to estimate the unknown external disturbances. The primary advantage of [...] Read more.
This paper addresses the issue of practical fixed-time tracking control for a class of strict-feedback nonlinear systems subject to external disturbances, while ensuring flexible prescribed performance. First, a fixed-time disturbance observer is designed to estimate the unknown external disturbances. The primary advantage of the proposed fixed-time disturbance observer lies in its capability to estimate both the disturbance itself and its higher-order derivatives in fixed time. In addition, various prescribed performance behaviors can be realized via a set of function transformations, merely by modifying certain critical parameters, without the need to redesign the controller. It is shown that, under the proposed control strategy, the system output can track the reference signal in fixed time, and the tracking error always remains within the prescribed performance boundaries. Finally, the simulation results are provided to demonstrate the feasibility and effectiveness of the proposed control scheme. Full article
Show Figures

Figure 1

13 pages, 2098 KiB  
Article
A Prescribed-Time Consensus Algorithm for Distributed Time-Varying Optimization Based on Multiagent Systems
by Yanling Zheng, Siyu Liu and Jie Zhong
Mathematics 2025, 13(13), 2190; https://doi.org/10.3390/math13132190 - 4 Jul 2025
Viewed by 275
Abstract
This paper presents a distributed optimization algorithm for time-varying objective functions utilizing a prescribed-time convergent multi-agent system within undirected communication networks. Departing from conventional time-invariant optimization paradigms with static optimal solutions, our approach specifically addresses the challenge of tracking dynamic optimal trajectories in [...] Read more.
This paper presents a distributed optimization algorithm for time-varying objective functions utilizing a prescribed-time convergent multi-agent system within undirected communication networks. Departing from conventional time-invariant optimization paradigms with static optimal solutions, our approach specifically addresses the challenge of tracking dynamic optimal trajectories in evolving environments. A novel continuous-time distributed optimization algorithm is developed based on prescribed-time consensus, guaranteeing the consensus attainment among agents within a user-defined timeframe while asymptotically converging to the time-dependent optimal solution. The proposed methodology enables explicit predetermination of convergence duration, representing a significant advancement over existing asymptotic convergence methods. Moreover, two simulation examples on the rendezvous problem and multi-robots control are presented to validate the theoretical results, exhibiting precise time-controlled convergence characteristics and effective tracking performance for time-varying optimization targets. Full article
Show Figures

Figure 1

19 pages, 4711 KiB  
Article
Dynamical Analysis and Optimization of Combined Vibration Isolator with Time Delay
by Yaowei Wang and Xiangyu Li
Mathematics 2025, 13(13), 2188; https://doi.org/10.3390/math13132188 - 4 Jul 2025
Viewed by 214
Abstract
Vibration control has long been a key concern in engineering, with low-frequency vibration isolation remaining particularly challenging. Traditional linear isolators are limited in their ability to provide high load-bearing capacity and effective low-frequency isolation simultaneously. In contrast, quasi-zero stiffness (QZS) isolators offer low [...] Read more.
Vibration control has long been a key concern in engineering, with low-frequency vibration isolation remaining particularly challenging. Traditional linear isolators are limited in their ability to provide high load-bearing capacity and effective low-frequency isolation simultaneously. In contrast, quasi-zero stiffness (QZS) isolators offer low dynamic stiffness near equilibrium while maintaining high static stiffness, thereby enabling superior isolation performance in the low and ultra-low frequency range. This paper proposes a novel vibration isolation system that combines a grounded dynamic absorber with a QZS isolator, incorporating time-delay feedback control to enhance performance. The dynamic equations of the system are derived using Newton’s second law. The harmonic balance method combined with the arc-length continuation technique is employed to obtain steady-state responses under harmonic force excitation. The influence of feedback gain and time delay on vibration isolation effectiveness and dynamic behavior is analyzed, demonstrating the ability of time-delay feedback to modulate system responses and suppress primary resonance peaks. To further enhance performance, a genetic algorithm is used to optimize the control parameters under harmonic force excitation. The force transmissibility is defined as fitness functions, and the effects of control parameters on these metrics are examined. The results show that the optimized time-delay feedback parameters significantly reduce the transmitted force, improving the overall isolation efficiency. The proposed system provides a promising approach for achieving high-performance vibration isolation in low-frequency environments. Full article
Show Figures

Figure 1

22 pages, 4907 KiB  
Article
Predefined Time Control of State-Constrained Multi-Agent Systems Based on Command Filtering
by Jianhua Zhang, Xuan Yu, Quanmin Zhu and Zhanyang Yu
Mathematics 2025, 13(13), 2151; https://doi.org/10.3390/math13132151 - 30 Jun 2025
Viewed by 256
Abstract
This paper resolves the predefined-time control problem for multi-agent systems under predefined performance metrics and state constraints, addressing critical limitations of traditional methods—notably their inability to enforce strict user-specified deadlines for mission-critical operations, coupled with difficulties in simultaneously guaranteeing transient performance bounds and [...] Read more.
This paper resolves the predefined-time control problem for multi-agent systems under predefined performance metrics and state constraints, addressing critical limitations of traditional methods—notably their inability to enforce strict user-specified deadlines for mission-critical operations, coupled with difficulties in simultaneously guaranteeing transient performance bounds and state constraints while suffering prohibitive stability proof complexity. To overcome these challenges, we propose a predefined performance control methodology that integrates Barrier Lyapunov Functions command-filtered backstepping. The framework rigorously ensures exact convergence within user-defined time independent of initial conditions while enforcing strict state constraints through time-varying BLF boundaries and further delivers quantifiable performance such as overshoot below 5% and convergence within 10 s. By eliminating high-order derivative continuity proofs via command-filter design, stability analysis complexity is reduced by 40% versus conventional backstepping. Stability proofs and dual-case simulations (UAV formation/smart grid) demonstrate over 95% tracking accuracy under disturbances and constraints, validating broad applicability in safety-critical multi-agent systems. Full article
Show Figures

Figure 1

20 pages, 788 KiB  
Article
Fuzzy Resilient Control of DC Microgrids with Constant Power Loads Based on Markov Jump Models
by Wei Hu, Yu Shen, Fan Yang, Zhen Chang and Shanglin Zhao
Mathematics 2024, 12(17), 2656; https://doi.org/10.3390/math12172656 - 27 Aug 2024
Cited by 2 | Viewed by 826
Abstract
This paper addresses the fuzzy resilient control of DC microgrids with constant power loads. The DC microgrid is subject to abrupt parameter changes which are described by the Markov jump model. Due to the constant power loads, the DC microgrid exhibits nonlinear dynamics [...] Read more.
This paper addresses the fuzzy resilient control of DC microgrids with constant power loads. The DC microgrid is subject to abrupt parameter changes which are described by the Markov jump model. Due to the constant power loads, the DC microgrid exhibits nonlinear dynamics which are characterized by a T-S fuzzy model. According to the parallel distributed compensation principle, mode-dependent fuzzy resilient controllers are designed to stabilize the resultant T-S fuzzy Markov jump DC microgrid. The “resilient” means the controller could cope with the uncertainty caused by the inaccurate execution of the control laws. This uncertainty is governed by a Bernoulli distributed random variable and thus may not occur. Then, the mean square exponential stability is analyzed for the closed-loop system by using the mode-dependent Lyapunov function. Since the stability conditions are not convex, a design algorithm is further derived to calculate the fuzzy resilient controller gains. Finally, simulations are provided to test the effectiveness of the proposed results. Full article
Show Figures

Figure 1

15 pages, 409 KiB  
Article
Double-Observer-Based Bumpless Transfer Control of Switched Positive Systems
by Yahao Yang, Zhong Huang and Pei Zhang
Mathematics 2024, 12(11), 1724; https://doi.org/10.3390/math12111724 - 1 Jun 2024
Cited by 1 | Viewed by 957
Abstract
This paper investigates the bumpless transfer control of linear switched positive systems based on state and disturbance observers. First, state and disturbance observers are designed for linear switched positive systems to estimate the state and the disturbance. By combining the designed state observer, [...] Read more.
This paper investigates the bumpless transfer control of linear switched positive systems based on state and disturbance observers. First, state and disturbance observers are designed for linear switched positive systems to estimate the state and the disturbance. By combining the designed state observer, the disturbance observer, and the output, a new controller is constructed for the systems. All gain matrices are described in the form of linear programming. By using co-positive Lyapunov functions, the positivity and stability of the closed-loop system can be ensured. In order to achieve the bumpless transfer property, some additional sufficient conditions are imposed on the control conditions. The novelties of this paper lie in that (i) a novel framework is presented for positive disturbance observer, (ii) double observers are constructed for linear switched positive systems, and (iii) a bumpless transfer controller is proposed in terms of linear programming. Finally, two examples are given to illustrate the effectiveness of the proposed results. Full article
Show Figures

Figure 1

14 pages, 450 KiB  
Article
Cooperative Adaptive Fuzzy Control for the Synchronization of Nonlinear Multi-Agent Systems under Input Saturation
by Jinxia Wu and Pengfei Cui
Mathematics 2024, 12(10), 1426; https://doi.org/10.3390/math12101426 - 7 May 2024
Cited by 2 | Viewed by 1019
Abstract
This research explores the synchronization issue of leader–follower systems with multiple nonlinear agents, which operate under input saturation constraints. Each follower operates under a spectrum of unknown dynamic nonlinear systems with non-strict feedback. Additionally, due to the fact that the agents may be [...] Read more.
This research explores the synchronization issue of leader–follower systems with multiple nonlinear agents, which operate under input saturation constraints. Each follower operates under a spectrum of unknown dynamic nonlinear systems with non-strict feedback. Additionally, due to the fact that the agents may be geographically dispersed or have different communication capabilities, only a subset of followers has direct communication with the leader. Compared to linear systems, nonlinear systems can provide a more detailed description of real-world physical models. However, input saturation is present in most real systems, due to various factors such as limited system energy and the physical constraints of the actuators. An auxiliary system of Nth order is introduced to counteract the impact of input saturation, which is then employed to create a collaborative controller. Due to the powerful capability of fuzzy logic systems in simulating complex nonlinear relationships, they are deployed to approximate the enigmatic nonlinear functions intrinsic to the systems. A distributed adaptive fuzzy state feedback controller is designed by approximating the derivative of the virtual controller by filters. The proposed controller ensures the synchronization of all follower outputs with the leader output in the communication graph. It is shown that all signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking errors converge to a small neighborhood around the origin. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach. Full article
Show Figures

Figure 1

14 pages, 343 KiB  
Article
The Strictly Dissipative Condition of Continuous-Time Markovian Jump Systems with Uncertain Transition Rates
by WonIl Lee, JaeWook Shin and BumYong Park
Mathematics 2024, 12(5), 639; https://doi.org/10.3390/math12050639 - 21 Feb 2024
Viewed by 1265
Abstract
This study addresses the problem of strictly dissipative stabilization for continuous-time Markovian jump systems (MJSs) with external disturbances and generally uncertain transition rates that contain completely unknown transition rates and their bound values. A stabilization condition is obtained to guarantee strict dissipativity for [...] Read more.
This study addresses the problem of strictly dissipative stabilization for continuous-time Markovian jump systems (MJSs) with external disturbances and generally uncertain transition rates that contain completely unknown transition rates and their bound values. A stabilization condition is obtained to guarantee strict dissipativity for the MJSs with partial knowledge in terms of the transition rates. To reduce the conservativity of the proposed condition, we used a boundary condition related to the bounds of the transition rate with slack variables. Finally, two simulation results are presented to describe the feasibility of the proposed controller. Full article
Show Figures

Figure 1

15 pages, 3931 KiB  
Article
Normalized Error-Based PI Controller and Its Application to the DC–DC Buck Converter
by Satyajit Chincholkar, Mohd Tariq, Majid Poshtan and Mohamed Sharaf
Mathematics 2024, 12(2), 240; https://doi.org/10.3390/math12020240 - 11 Jan 2024
Cited by 7 | Viewed by 2095
Abstract
In this article, the structure of the normalized error-based proportional-integral (PI) controller is presented and its application to the DC–DC buck converter is discussed. The main motivation is to overcome the drawbacks of saturation and the limited range of controller gains offered by [...] Read more.
In this article, the structure of the normalized error-based proportional-integral (PI) controller is presented and its application to the DC–DC buck converter is discussed. The main motivation is to overcome the drawbacks of saturation and the limited range of controller gains offered by the traditional PI controller. Initially, the theoretical structure and advantages of an improved PI controller are shown. Next, the problem of regulation of the step-down DC–DC converter is addressed using the proposed controller. The objective is to keep the load voltage constant even when the converter parameters vary. The averaged state-space model of the converter is presented and a detailed stability analysis based on the Lypunov indirect method is carried out. The results show an improved range of controller parameters when the proposed controller is employed. Finally, some simulation results are shown to illustrate the effect of controller parameter variations on the output response. These results also verify the ability of the proposed controller to handle the changes in the load, input voltage, and reference voltage of the converter. Moreover, a comparative simulation study validates the superior transient response of the proposed normalized error-based PI controller over the traditional PI controller. Full article
Show Figures

Figure 1

Back to TopTop