Influence of Steel Fiber Content on the Long-Term Stability of Slag-Containing UHPC Under Different Environments
Abstract
:1. Introduction
2. Experimental Program
2.1. Raw Materials
2.2. Mix Design
2.3. Specimen Preparation
2.4. Exposure Environments
- (1)
- Outdoors: Specimens were placed outdoors in Changsha at a 45° inclination facing south, experiencing natural weather conditions. During this period, the mean temperature and humidity in Changsha, China, are illustrated in Figure 2, fluctuating based on local weather conditions from an average temperature of −1 °C to 33 °C and relative humidity of 76% to 86%.
- (2)
- Seawater: Artificial seawater (AS2) was prepared based on the composition of natural seawater (NS) in the Gulf of China and specifications outlined by ASTM D-14 (AS1) (as presented in Table 4). To expedite the corrosion process over the prolonged exposure period, the concentration of AS2 was increased. Seawater and tap water were refreshed every 3 weeks to ensure a consistent environment.
- (3)
- Tap water: UHPC was submerged in ordinary tap water.
2.5. Testing Methods
2.5.1. Workability and Compressive Strength Test
2.5.2. Dimensional Stability Test
2.5.3. Mass Change Rate Test
2.5.4. Differential Thermogravimetry (DTG) Analysis
3. Results and Discussion
3.1. Workability
3.2. Compressive Strength
3.3. Dimensional Stability
3.4. Mass Change Rate
3.5. TG Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, C.; Wang, D.; Wu, L.; Wu, Z. The hydration and microstructure of ultra high-strength concrete with cement–silica fume–slag binder. Cem. Concr. Compos. 2015, 61, 44–52. [Google Scholar] [CrossRef]
- Wu, L.; Farzadnia, N.; Shi, C.; Zhang, Z.; Wang, H. Autogenous shrinkage of high performance concrete: A review. Constr. Build. Mater. 2017, 149, 62–75. [Google Scholar] [CrossRef]
- Longarini, N.; Crespi, P.G.; Zucca, M.; Giordano, N.; Silvestro, G. The advantages of fly ash use in concrete structures. Inż. Miner. 2014, 15, 141–145. [Google Scholar]
- Yang, Y.; Yang, E.-H.; Li, V.C. Autogenous healing of engineered cementitious composites at early age. Cem. Concr. Res. 2011, 41, 176–183. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.-Y.; Kurtis, K.E.; Jacobs, L.J.; Le Pape, Y.; Guimaraes, M. Quantitative evaluation of carbonation in concrete using nonlinear ultrasound. Mater. Struct. 2016, 49, 399–409. [Google Scholar] [CrossRef]
- Taylor-Lange, S.C.; Juenger, M.C.G.; Siegel, J.A. Impact of cement renders on airborne ozone and carbon dioxide concentrations. Atmos. Environ. 2013, 70, 263–266. [Google Scholar] [CrossRef]
- Chang, C.-F.; Chen, J.-W. The experimental investigation of concrete carbonation depth. Cem. Concr. Res. 2006, 36, 1760–1767. [Google Scholar] [CrossRef]
- Papadakis, V.G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem. Concr. Res. 2000, 30, 291–299. [Google Scholar] [CrossRef]
- Saetta, A.V.; Schrefler, B.A.; Vitaliani, R.V. The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials. Cem. Concr. Res. 1993, 23, 761–772. [Google Scholar] [CrossRef]
- Poupard, O.; L’Hostis, V.; Catinaud, S.; Petre-Lazar, I. Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment. Cem. Concr. Res. 2006, 36, 504–520. [Google Scholar] [CrossRef]
- Ahmad, S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction––A review. Cem. Concr. Compos. 2003, 25, 459–471. [Google Scholar] [CrossRef]
- Bertolini, L.; Elsener, B.; Pedeferri, P.; Redaelli, E.; Polder, R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Wang, L.; Luo, R.; Zhang, W.; Jin, M.; Tang, S. Effects of Fineness and Content of Phosphorus Slag on Cement Hydration, Permeability, Pore Structure and Fractal Dimension of Concrete. Fractals 2021, 29, 2140004. [Google Scholar] [CrossRef]
- Zollo, R.F. Fiber-reinforced concrete: An overview after 30 years of development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
- Teng, L.; Meng, W.; Khayat, K.H. Rheology control of ultra-high-performance concrete made with different fiber contents. Cem. Concr. Res. 2020, 138, 106222. [Google Scholar] [CrossRef]
- Ma, R.; Guo, L.; Ye, S.; Sun, W.; Liu, J. Influence of Hybrid Fiber Reinforcement on Mechanical Properties and Autogenous Shrinkage of an Ecological UHPFRCC. J. Mater. Civ. Eng. 2019, 31, 04019032. [Google Scholar] [CrossRef]
- Yalçınkaya, Ç.; Çopuroğlu, O. Hydration heat, strength and microstructure characteristics of UHPC containing blast furnace slag. J. Build. Eng. 2021, 34, 101915. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H.J.H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015, 55, 383–394. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W. Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes. Constr. Build. Mater. 2017, 136, 307–313. [Google Scholar] [CrossRef]
- Bae, Y.; Pyo, S. Ultra high performance concrete (UHPC) sleeper: Structural design and performance. Eng. Struct. 2020, 210, 110374. [Google Scholar] [CrossRef]
- Fan, D.; Zhu, J.; Fan, M.; Lu, J.-X.; Chu, S.H.; Dong, E.; Yu, R. Intelligent design and manufacturing of ultra-high performance concrete (UHPC)—A review. Constr. Build. Mater. 2023, 385, 131495. [Google Scholar] [CrossRef]
- Amran, M.; Murali, G.; Makul, N.; Tang, W.C.; Alluqmani, A.E. Sustainable development of eco-friendly ultra-high performance concrete (UHPC): Cost, carbon emission, and structural ductility. Constr. Build. Mater. 2023, 398, 132477. [Google Scholar] [CrossRef]
- Mahjoubi, S.; Barhemat, R.; Meng, W.; Bao, Y. AI-guided auto-discovery of low-carbon cost-effective ultra-high performance concrete (UHPC). Resour. Conserv. Recycl. 2023, 189, 106741. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Banthia, N.; Yoon, Y.-S. Recent development of innovative steel fibers for ultra-high-performance concrete (UHPC): A critical review. Cem. Concr. Compos. 2024, 145, 105359. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Zhang, Y.; Wang, L. Corrosion of steel rebars across UHPC joint interface under chloride attack. Constr. Build. Mater. 2023, 387, 131591. [Google Scholar] [CrossRef]
- GB175-2007; Common Portland Cement. China National Standardization Management Committee: Beijing, China, 2007.
- GB/T 2419-2005; Test Method for Fluidity of Cement Mortar. Standardization Administration of China: Beijing, China, 2005.
- GB/T 17671-1999; Method of Testing Cements-Determination of Strength. Standardization Administration of China: Beijing, China, 1999.
- GB/T 50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. Standardization Administration of China: Beijing, China, 2009.
- Wu, L. Study on Dimensional Stability of Ultra-High Performance Concrete (UHPC); University of Southern Queensland: Toowoomba, Australia, 2020. [Google Scholar]
- Liao, G.; Xu, L.; Wu, L. Long-term stability of ultra-high-performance concrete with steel fibers in various environments. Adv. Cem. Res. 2025, 1–32. [Google Scholar] [CrossRef]
- Liao, G.; Wang, D.; Wang, W.; He, Y. Microstructure, strength development mechanism, and CO2 emission analyses of alkali-activated fly ash-slag mortars. J. Clean. Prod. 2024, 442, 141116. [Google Scholar] [CrossRef]
- Chong, W.; Xincheng, P.; Ke, C. Hydration process test of ultra-low water-cement ratio cement paste materials. J. Mater. Sci. Eng. 2008, 26, 852–857. (In Chinese) [Google Scholar]
- Brooks, J.J. 30-year creep and shrinkage of concrete. Mag. Concr. Res. 2005, 57, 545–556. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Banthia, N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem. Concr. Compos. 2016, 73, 267–280. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, J.; Zhao, S. Experimental study on shrinkage of HPC containing fly ash and ground granulated blast-furnace slag. Constr. Build. Mater. 2017, 155, 145–153. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.; Olek, J. Differentiating seawater and groundwater sulfate attack in Portland cement mortars. Cem. Concr. Res. 2006, 36, 2132–2137. [Google Scholar] [CrossRef]
- Nagataki, S.; Gomi, H. Expansive admixtures (mainly ettringite). Cem. Concr. Compos. 1998, 20, 163–170. [Google Scholar] [CrossRef]
- Soliman, A.M. Early-Age Shrinkage of Ultra High-Performance Concrete: Mitigation and Compensating Mechanisms; The University of Western Ontario: London, ON, Canada, 2011. [Google Scholar]
- Bissonnette, B.; Pierre, P.; Pigeon, M. Influence of key parameters on drying shrinkage of cementitious materials. Cem. Concr. Res. 1999, 29, 1655–1662. [Google Scholar] [CrossRef]
- Ba, M.; Qian, C.; Wang, H. Effects of specimen shape and size on water loss and drying shrinkage of cement-based materials. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2013, 28, 733–740. [Google Scholar] [CrossRef]
- Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 2005, 35, 609–613. [Google Scholar] [CrossRef]
- Nochaiya, T.; Sekine, Y.; Choopun, S.; Chaipanich, A. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive. J. Alloys Compd. 2015, 630, 1–10. [Google Scholar] [CrossRef]
- Tafraoui, A.; Escadeillas, G.; Vidal, T. Durability of the Ultra High Performances Concrete containing metakaolin. Constr. Build. Mater. 2016, 112, 980–987. [Google Scholar] [CrossRef]
- Carde, C.; François, R. Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties. Cem. Concr. Res. 1997, 27, 539–550. [Google Scholar] [CrossRef]
- Matite, V.; Moranville, M. The Leaching Of The Reactive Powder Concretes: Results on Transfer Properties. MRS Online Proc. Libr. 1997, 503, 145. [Google Scholar] [CrossRef]
- Revertegat, E.; Richet, C.; Gégout, P. Effect of pH on the durability of cement pastes. Cem. Concr. Res. 1992, 22, 259–272. [Google Scholar] [CrossRef]
Density (kg/m3) | Specific Surface Area (m2/kg) | 80 μm Residue on Sieve (%) | Setting Time (Hour) | Flexural Strength (MPa) | Compressive Strength (MPa) | |||
---|---|---|---|---|---|---|---|---|
Initial | Final | 3 Days | 28 Days | 3 Days | 28 Days | |||
3.15 | 380 | 0.3 | 2.5 | 3.4 | 6.4 | 9.0 | 33.0 | 60.0 |
Oxide (wt. %) | SiO2 | CaO | Al2O3 | MgO | Fe2O3 | Na2O | K2O | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|
PC | 25.26 | 64.67 | 6.38 | 2.68 | 4.05 | - | - | 0.94 | 0.9 |
SF | 90.82 | 0.45 | 1.03 | 0.83 | 1.50 | 0.17 | 0.86 | - | 4.34 |
BFS | 33.00 | 39.11 | 13.91 | 10.04 | 0.82 | 0.26 | 1.61 | 0.92 | 0.33 |
No. | w/b | Mass (kg/m3) | ||||||
---|---|---|---|---|---|---|---|---|
Water | PC | SF | BFS | SP * | Fiber | Sand | ||
K0 | 0.18 | 164 | 550 | 200 | 250 | 20 | 0.0 | 1100 |
K1 | 0.18 | 164 | 550 | 200 | 250 | 20 | 78.5 | 1100 |
K2 | 0.18 | 164 | 550 | 200 | 250 | 20 | 157.0 | 1100 |
K3 | 0.18 | 164 | 550 | 200 | 250 | 20 | 235.5 | 1100 |
Chemical | NaCl | MgCl2 | Na2SO4 | MgSO4·7H2O | MgCl2·6H2O | CaSO4·2H2O | CaCO3 | CaC12 | KCl |
---|---|---|---|---|---|---|---|---|---|
NS | 21.0 | 2.54 | - | 1.54 | - | 2.43 | 0.1 | - | - |
AS1 | 24.5 | - | 4.1 | - | 2.54 | - | - | 1.2 | 0.1 |
AS2 | 25.0 | 12.7 | 10.0 | - | 7 | - | - | - | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, G.; Xu, Y.; Wang, D.; Wu, L. Influence of Steel Fiber Content on the Long-Term Stability of Slag-Containing UHPC Under Different Environments. Materials 2025, 18, 1068. https://doi.org/10.3390/ma18051068
Liao G, Xu Y, Wang D, Wu L. Influence of Steel Fiber Content on the Long-Term Stability of Slag-Containing UHPC Under Different Environments. Materials. 2025; 18(5):1068. https://doi.org/10.3390/ma18051068
Chicago/Turabian StyleLiao, Gaoyu, Yikui Xu, Dianchao Wang, and Linmei Wu. 2025. "Influence of Steel Fiber Content on the Long-Term Stability of Slag-Containing UHPC Under Different Environments" Materials 18, no. 5: 1068. https://doi.org/10.3390/ma18051068
APA StyleLiao, G., Xu, Y., Wang, D., & Wu, L. (2025). Influence of Steel Fiber Content on the Long-Term Stability of Slag-Containing UHPC Under Different Environments. Materials, 18(5), 1068. https://doi.org/10.3390/ma18051068