materials-logo

Journal Browser

Journal Browser

Nonconventional Technology in Materials Processing-3rd Edition

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Manufacturing Processes and Systems".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 15100

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Manufacturing Technology, Faculty of Production Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
Interests: electrical discharge machining; noncoventional technology; surface finishing technology; surface metrology; characteristics of material properties; nanomaterials; experimental and simulative analysis of manufacturing processes; optimization of manufacturing processes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Manufacturing Technology, Faculty of Production Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
Interests: electrical discharge machining; wire; tool wear
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Advances in the engineering of materials have resulted in the introduction of new materials suitable for selected industries. The development of proper machining methods for modern materials, for example, is critically important for their implementation in aerospace, automobile, or machinery industries. In recent years, the involvement of multidisciplinary teams in the application of nonconventional technology, including electrical discharge machining, electrochemical machining, additive manufacturing, abrasive finishing, hybrid manufacturing, or laser processing, in the precise manufacturing of difficult-to-cut material has considerably increased.

The main aim of this Special Issue is to present recent advances in the field of nonconventional technology centered around the processing of materials.

This Special Issue includes high-quality original research papers, review papers, and case studies that deal with the investigation, modeling, optimization, and simulation of nonconventional technology centered around the processing of materials.

It is my pleasure to invite you to submit original research papers, short communications, and state-of-the-art reviews for this Special Issue.

Prof. Dr. Rafał Świercz
Dr. Dorota Oniszczuk-Świercz
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nonconventional manufacturing processes
  • electrical discharge machining
  • electrochemical machining
  • abrasive finishing
  • modelling and simulation
  • optimization
  • additive manufacturing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

17 pages, 5690 KiB  
Article
Evaluation of the Accuracy of a Fused Deposition Modeling Process in the Production of Low-Density ABS Lattice Structures
by Gianluca Parodo, Luca Sorrentino, Sandro Turchetta and Giuseppe Moffa
Materials 2025, 18(7), 1679; https://doi.org/10.3390/ma18071679 - 7 Apr 2025
Viewed by 304
Abstract
Fused Deposition Modeling (FDM) has emerged as one of the most widely adopted additive manufacturing (AM) technologies due to its broad material availability and low production costs, enabling the efficient production of complex geometries and customized components. Among the materials commonly used in [...] Read more.
Fused Deposition Modeling (FDM) has emerged as one of the most widely adopted additive manufacturing (AM) technologies due to its broad material availability and low production costs, enabling the efficient production of complex geometries and customized components. Among the materials commonly used in AM, Acrylonitrile Butadiene Styrene (ABS) is particularly notable for its favorable mechanical properties, ease of processing, and versatility. While moderate-to-high-density lattice configurations have been extensively studied, low relative density lattice structures remain largely unexplored. This study investigates the feasibility of fabricating Cuboidal Body-Centered Cubic (BCC) lattice structures with relative densities of 5%, 10%, and 15% using FDM. The geometrical/dimensional accuracy of the printed samples is thoroughly assessed to quantify fabrication-induced deviations, focusing on strut geometry and overall lattice consistency. Results show that while smaller lattice configurations, particularly those with 5% relative density, exhibit significant geometrical inaccuracies due to printing limitations (e.g., strut waviness, material deposition inconsistencies, layer misalignment), larger configurations demonstrate improved dimensional and geometrical fidelity and structural integrity. A framework is proposed for assessing geometrical/dimensional fidelity, which can enhance the predictive modeling of these structures and optimize manufacturing processes. These findings clarify low relative density lattice manufacturability, guiding research on mechanical performance for lightweight aerospace applications. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

20 pages, 8810 KiB  
Article
The Experimental Comparison of Abrasion Resistance of Extruded and 3D Printed Plastics
by Maciej Kujawa and Anita Ptak
Materials 2025, 18(7), 1592; https://doi.org/10.3390/ma18071592 - 1 Apr 2025
Viewed by 303
Abstract
3D printing is becoming widely used and printed parts very often replace extruded parts. Plastics, due to their ability to work with steel without lubrication, are commonly used for sliding components and are therefore exposed to various types of wear, including abrasive wear. [...] Read more.
3D printing is becoming widely used and printed parts very often replace extruded parts. Plastics, due to their ability to work with steel without lubrication, are commonly used for sliding components and are therefore exposed to various types of wear, including abrasive wear. In this paper, abrasive wear resistance tests were carried out to compare extruded and 3D-printed samples. Moreover, microhardness tests, surface topography and microscopic observations of the surface of the samples before and after friction were also conducted. Samples were made from eight materials that are most commonly used in 3D FDM printing: PLA, PET-G, ABS, PA, PP, PC, PMMA and HIPS. For six out of the eight materials tested, samples made by extrusion proved to be more resistant to abrasive wear (between 10% and 24%) than those printed ones. Fabrication by 3D printing can lead to different object properties and thus different abrasion resistance. The abrasion resistance of extruded samples depends on factors reported in the literature such as hardness, density and surface roughness. In the case of 3D printed samples, no such relationship was found. For this reason, the researchers believe that the reduced abrasion wear resistance of printed samples is due to their specific internal structure. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

22 pages, 4305 KiB  
Article
Influence of Cold Plasma Treatment on Cellulose Modification with Different Oxidizing Agents
by Denis Mihaela Panaitescu, Sorin Ionuţ Vizireanu, Gabriela Mădălina Oprică, Cătălina Diana Uşurelu, Cristian Stancu, Veronica Sătulu, Marius Ghiurea, Cristian-Andi Nicolae, Monica Florentina Raduly and Adriana Nicoleta Frone
Materials 2025, 18(5), 1066; https://doi.org/10.3390/ma18051066 - 27 Feb 2025
Cited by 1 | Viewed by 640
Abstract
Cellulose is a versatile biopolymer increasingly applied in medicine and industry due to its biodegradability and biocompatibility, along with the renewability and large availability of source materials. However, finding simple, eco-friendly, and effective methods to modify cellulose to provide it with new functionalities [...] Read more.
Cellulose is a versatile biopolymer increasingly applied in medicine and industry due to its biodegradability and biocompatibility, along with the renewability and large availability of source materials. However, finding simple, eco-friendly, and effective methods to modify cellulose to provide it with new functionalities remains a challenge. This work presents a new, inexpensive, and eco-friendly method to chemically modify microcrystalline cellulose (MCC) by the submerged cold plasma treatment of an aqueous suspension of MCC containing different oxidizing agents, such as hydrogen peroxide (H2O2), sodium hypochlorite (NaClO), or sodium periodate (NaIO4). Fourier-transform Infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) showed that plasma treatment intensified the oxidizing effect of H2O2, NaClO, and NaIO4, with plasma-assisted NaClO treatment yielding the highest MCC oxidation level. XPS indicated that the plasma-assisted oxidations also resulted in different degrees of chemical degradation of MCC, a finding further supported by the thermogravimetric analysis (TGA) results. X-ray diffraction (XRD) data revealed a different effect of the oxidizing agents on the crystalline and amorphous regions in MCC. Scanning electron microscopy (SEM) images showed that the combined treatment with plasma and chemical oxidizing agents led to MCC fragmentation and varying degrees of defibrillation into nanofibers. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

14 pages, 5999 KiB  
Article
Effect of Initial Surface Morphology and Laser Parameters on the Laser Polishing of Stainless Steel Manufactured by Laser Powder Bed Fusion
by Jiangwei Liu, Kangkang Zhao, Xiebin Wang and Hu Li
Materials 2024, 17(20), 4968; https://doi.org/10.3390/ma17204968 - 11 Oct 2024
Viewed by 1097
Abstract
The topological characteristics of the down-skin surfaces for as-built components by laser powder bed fusion (LPBF) are particularly representative, while the study on the improvement of the surface quality of these surfaces remains largely unexplored. Herein, the laser polishing of LPBF-built components with [...] Read more.
The topological characteristics of the down-skin surfaces for as-built components by laser powder bed fusion (LPBF) are particularly representative, while the study on the improvement of the surface quality of these surfaces remains largely unexplored. Herein, the laser polishing of LPBF-built components with different inclination angles was systematically investigated with an emphasis on the down-skin surfaces. Our result shows that the topography of the top surface is independent of the inclination angle, and the surface topography of the down-skin surface is dominated by additional angle-dependent surface characteristics. It also indicates that the surface roughness can be reduced sharply when increasing the laser power from 40 W to 60 W, and the reduction slows down when further increasing the laser power while decreasing the scanning speed leads to a progressive improvement of the surface morphology. Moreover, a second-order regression model was established to evaluate the influence of the initial surface morphology and polishing parameters on the polished surface roughness and to achieve surface roughness optimization. Therefore, our established methodology can be readily applied to surface morphology manipulation and process optimization for laser polishing of widely used metals and alloys fabricated by the additive manufacturing process. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

15 pages, 1665 KiB  
Article
Mechanistic Model of Fatigue in Ultrasonic Assisted Machining
by Reza Teimouri and Marcin Grabowski
Materials 2024, 17(19), 4889; https://doi.org/10.3390/ma17194889 - 5 Oct 2024
Viewed by 836
Abstract
Anti-fatigue design in the machining process of aviation material requires advanced processes to enhance the surface integrity and a holistic model which can optimize the process aiming at maximum fatigue life. In the present study, the axial ultrasonic assisted milling process was utilized [...] Read more.
Anti-fatigue design in the machining process of aviation material requires advanced processes to enhance the surface integrity and a holistic model which can optimize the process aiming at maximum fatigue life. In the present study, the axial ultrasonic assisted milling process was utilized to machine the Inconel 718 while the process executes the thermomechanical cutting and peening action simultaneously. To optimize the process factors, a hybrid model using a combination of regression analysis and an analytical model was developed to correlate the machining factors, i.e., vibration amplitude, cutting velocity and feed rate to fatigue life. Herein, the former was used to map the process inputs to surface integrity aspects (SIAs), viz. roughness, hardness and residual stress; then, the SIA was mapped to fatigue life through a stress-based approach. The obtained results revealed that there is close agreement between the measured and predicted values of fatigue life where the prediction error is less than two times the dispersion. On the other hand, applying ultrasonic vibration at the highest amplitude together with the maximum feed rate and cutting velocity yield significant improvement in fatigue life, i.e., three times the same condition without ultrasonic vibration in light of the enhancement of compressive residual stress and work hardening of the surface layers. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

9 pages, 1834 KiB  
Article
Enhanced Minor Ginsenoside Contents of Nano-Sized Black Korean Ginseng through Hot Melt Extrusion
by Junho Lee, Ha-Yeon Lee and Jong-Suep Baek
Materials 2024, 17(18), 4612; https://doi.org/10.3390/ma17184612 - 20 Sep 2024
Viewed by 1019
Abstract
Black ginseng (BG), a traditional medicinal herb produced through a nine-stage steaming and drying process, exhibits stronger pharmacological efficacy, including antioxidant, anti-inflammatory, and anti-cancer properties, when compared to white and red ginseng. The ginsenosides in BG are classified as major and minor types, [...] Read more.
Black ginseng (BG), a traditional medicinal herb produced through a nine-stage steaming and drying process, exhibits stronger pharmacological efficacy, including antioxidant, anti-inflammatory, and anti-cancer properties, when compared to white and red ginseng. The ginsenosides in BG are classified as major and minor types, with minor ginsenosides demonstrating superior pharmacological properties. However, their low concentrations limit their availability for research and clinical applications. In this study, hot melt extrusion (HME) was utilized as an additional processing technique to enhance the content of minor ginsenoside in BG, and the physicochemical properties of the formulation were analyzed. Ginsenoside content in BG and HME-treated BG (HME-BG) was analyzed using high-performance liquid chromatography (HPLC), while their physicochemical properties were evaluated through dynamic light scattering (DLS), electrophoretic light scattering (ELS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FT-IR). HME treatment resulted in a significant increase in minor ginsenosides Rg3 and compound K (CK) by 330% and 450%, respectively, while major ginsenosides Rg1 and Rb1 decreased or were not detected. Additionally, HME-BG demonstrated reduced particle size, improved PDI, and decreased crystallinity. HME treatment effectively converts major ginsenosides in BG into minor ginsenosides, enhancing its pharmacological efficacy and showing great potential for research and development applications. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

19 pages, 5935 KiB  
Article
Towards the Reuse of Fire Retarded Polyamide 12 for Laser Sintering
by Dylan Seigler, Marcos Batistella and José-Marie Lopez-Cuesta
Materials 2024, 17(16), 4064; https://doi.org/10.3390/ma17164064 - 15 Aug 2024
Cited by 1 | Viewed by 978
Abstract
The control of powder aging during Selective Laser Sintering (SLS) processing is one of the challenges to be overcome for the implementation of this technique in serial production. Aging phenomena, because of the elevated temperatures and long processing times, need to be considered [...] Read more.
The control of powder aging during Selective Laser Sintering (SLS) processing is one of the challenges to be overcome for the implementation of this technique in serial production. Aging phenomena, because of the elevated temperatures and long processing times, need to be considered when a fraction of the polymer powders present in the build chamber and not used to manufacture the parts are reused at various times. The aim of this study was to investigate the influence of successive reuse of blends of pure Polyamide 12 and its blends with two types of flame retardants (FR): ammonium polyphosphate (APP) and zinc borate (ZB). The composition of the blends was 70/30 (wt/wt) PA 12/FR. Four successive processing stages have been carried out by collecting the remaining powder blend each time. The powders were re-used using the same processing parameters after sieving. DSC measurements showed that the incorporation of FRs entailed a reduction in the processing window up to 4 °C; nevertheless, no further reduction was noted after aging. The TGA curves of aged blends of powders were also similar for pure PA 12 and PA 12 with FR. In addition, initial and reused powders presented a higher degree of crystallinity than the specimens processed from the powders. The heterogeneous character of the PA 12 after LS processing or reprocessing was shown through Pyrolysis Combustion Flow Calorimetry (PCFC) and cone calorimeter (CC) tests. FTIR analysis also showed that post-condensation reactions have occurred. The mode of action of the flame retardants was clearly seen on HRR curves at both tests. The first reuses of PA 12 powders entailed a significant reduction in time to ignition at the cone calorimeter (150 for the initial material to around 90 s for the reused material), indicating the formation of short polymer chains. Only in the case of zinc borate was it noticed that re-used powder was detrimental to the fire performance because of a strong increase in the value of pHRR (between 163 and 220 kW/m2 for reused material instead of 125 kW/m2 for the initial one). Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

22 pages, 9939 KiB  
Article
A Simplified Analytical Model for Strip Buckling in the Pressure-Assisted Milling Process
by Xuezhi Wang, Kelin Chen, Yanli Lin and Zhubin He
Materials 2024, 17(15), 3739; https://doi.org/10.3390/ma17153739 - 28 Jul 2024
Viewed by 917
Abstract
A simplified column-buckling model is developed to understand the buckling mechanism of thin-walled strips restrained by uniform lateral pressure in the milling process. The strip is simplified as two rigid columns connected by a rotation spring, resting on a smooth surface, restrained by [...] Read more.
A simplified column-buckling model is developed to understand the buckling mechanism of thin-walled strips restrained by uniform lateral pressure in the milling process. The strip is simplified as two rigid columns connected by a rotation spring, resting on a smooth surface, restrained by a uniform pressure and loaded by an axial force. Two loading cases are considered, i.e., the dead load and the follower load. Analytical solutions for the post-buckling responses of the two cases are derived based on the energy method. The minimum buckling force, Maxwell force and stability conditions for the two cases are established. It is demonstrated that the application of higher uniform pressure increases the minimum buckling force for the column and thus makes the column less likely to buckle. For the same pressure level, the dead load is found to be more effective than the follower load in suppressing the buckling of the system. The effect of initial geometric imperfection is also investigated, and the imperfection amplitude and critical restraining pressure that prevent buckling are found to be linearly related. The analytical results are validated by finite element simulations. This analytical model reveals the buckling mechanism of strips under lateral pressure restraint, which cannot be explained by the conventional bifurcation buckling theory, and provides a theoretical foundation for buckling-prevention strategies during the milling process of thin-walled strips, plates and shells commonly encountered in aerospace or automotive industries. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

21 pages, 16832 KiB  
Article
Experimental Investigation on the Impact of Graphite Electrodes Grain Size on Technological Parameters and Surface Texture of Hastelloy C-22 after Electrical Discharge Machining with Negative Polarity
by Rafał Nowicki, Dorota Oniszczuk-Świercz and Rafał Świercz
Materials 2024, 17(10), 2257; https://doi.org/10.3390/ma17102257 - 10 May 2024
Cited by 6 | Viewed by 1847
Abstract
Electrical discharge machining (EDM) is a rapidly evolving method in modern industry that manufactures highly complex components. The physical properties of a tool electrode material are significant factors in determining the effectiveness of the process, as well as the characteristics of the machined [...] Read more.
Electrical discharge machining (EDM) is a rapidly evolving method in modern industry that manufactures highly complex components. The physical properties of a tool electrode material are significant factors in determining the effectiveness of the process, as well as the characteristics of the machined surfaces. The current trend of implementing graphite tool electrodes in manufacturing processes is observed. Innovative material engineering solutions enable graphite production with miniaturized grain size. However, the correlation between the graphite electrode grain size and the mechanism of the process removal in the EDM is a challenge for its widespread implementation in the industry. This research introduces a new method to evaluate the impact of the graphite electrode grain size and machining parameters on the material removal effectiveness, relative tool wear rate, and surface roughness (Ra) of Hastelloy C-22 following EDM with negative polarity. The study utilized new graphite materials with a grain size of 1 µm (POCO AF-5) and 10 µm (POCO EDM-180). An assessment of the impact of the EDM process parameters on the technological parameters and the development of the surface roughness was carried out. Electrical discharge machining with fine-grained graphite electrodes increases process efficiency and reduces tool wear. Graphite grains detached from the tool electrode affect the stability of electrical discharges and the efficiency of the process. Based on the experimental results, mathematical models were developed, enabling the prediction of machining effects to advance state-of-the-art manufacturing processes. The obtained mathematical models can be implemented in modern industrial EDM machines as guidelines for selecting adequate machining parameters depending on the desired process efficiency, tool wear rate, and surface roughness for advanced materials. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

19 pages, 6219 KiB  
Article
The Influence of Variable Stiffness of the Shape Memory Alloys Carbon Composite Structure on Mechanical Vibration
by Damian Markuszewski, Mariusz Wądołowski and Arkadiusz Krajewski
Materials 2024, 17(2), 480; https://doi.org/10.3390/ma17020480 - 19 Jan 2024
Cited by 1 | Viewed by 1101
Abstract
The purpose of this study is to investigate the dynamic properties of new structures formed by combining carbon fiber and epoxy resin-based composite materials with SMA (shape memory alloy) “smart materials” in the form of NiTiNol wire. Such a combination will have an [...] Read more.
The purpose of this study is to investigate the dynamic properties of new structures formed by combining carbon fiber and epoxy resin-based composite materials with SMA (shape memory alloy) “smart materials” in the form of NiTiNol wire. Such a combination will have an impact on the dynamics of the structure, especially in terms of stiffness controllability. Key mechanical parameters such as natural frequency and stiffness, as well as the effect of temperature, were determined through experimental studies. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

16 pages, 10751 KiB  
Article
The Influence of Vibro-Assisted Abrasive Processing on the Surface Roughness and Sub-Surface Microstructure of Inconel 939 Specimen Made by LPBF
by Joanna Radziejewska, Michał Marczak, Piotr Maj and Dominik Głowacki
Materials 2023, 16(23), 7429; https://doi.org/10.3390/ma16237429 - 29 Nov 2023
Cited by 3 | Viewed by 1276
Abstract
This paper presents the research results on the influence of vibration abrasive machining parameters on the surface layer integrity of elements made by LPBF technology from Inconel 939. The research was carried out on samples of various sizes on vibrating smoothing machines. The [...] Read more.
This paper presents the research results on the influence of vibration abrasive machining parameters on the surface layer integrity of elements made by LPBF technology from Inconel 939. The research was carried out on samples of various sizes on vibrating smoothing machines. The influence of the size of the processed elements, the type of abrasive shapes, the processing time, and the supporting fluid on the surface roughness and microstructure of the processed elements was analyzed. Tests have shown that as a result of using vibration processing, it is possible to reduce the surface roughness five times to the value of Ra = 1.1 µm. A significant influence of the type of abrasive shapes was found. There was no significant effect of the machining fluid on the process. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

Review

Jump to: Research, Other

33 pages, 8520 KiB  
Review
Vat Photopolymerization-Based Additive Manufacturing of Si3N4 Ceramic Structures: Printing Optimization, Debinding/Sintering, and Applications
by Zi-Heng Wang, Yun-Zhuo Zhang, Wei-Jian Miao, Fan-Bin Wu, Shu-Qi Wang, Jia-Hu Ouyang, Ya-Ming Wang and Yong-Chun Zou
Materials 2025, 18(7), 1556; https://doi.org/10.3390/ma18071556 - 29 Mar 2025
Viewed by 506
Abstract
Si3N4 ceramics and composites stand out for their exceptional mechanical and thermal properties. Compared with conventional ceramic forming processes, 3D printing via vat photopolymerization not only ensures high geometric precision but also improves the forming efficiency and strength of green [...] Read more.
Si3N4 ceramics and composites stand out for their exceptional mechanical and thermal properties. Compared with conventional ceramic forming processes, 3D printing via vat photopolymerization not only ensures high geometric precision but also improves the forming efficiency and strength of green body. Nevertheless, the grayish appearance of Si3N4 and its relatively high refractive index can adversely affect the photocuring behavior in ceramic slurries. The primary objectives focus on enhancing the curing performance and rheological properties of slurries, minimizing defects during post-processing, and improving the relative density and mechanical properties of Si3N4 ceramics. Key advancements include slurry optimization via refractive index matching, biomodal particle gradation and surface modification, while the integration of whisker/fiber additions or polymer-derived ceramic strategies enhances mechanical properties. In addition, controlling the atmosphere and heating rate of the post-processing innovations can achieve a relative density of more than 95%. This paper introduces the mechanisms of vat photopolymerization and then summarizes the strategies for improving Si3N4 ceramic slurries as well as controlling the printing and debinding/sintering processes. It further highlights the ways in which different approaches can be used to enhance the properties of Si3N4 slurries and ceramic parts. Finally, applications of Si3N4 ceramics and composites via vat photopolymerization in various fields such as aviation, aerospace, energy, electronics, chemical processes, and biomedical implants are also presented to point out future opportunities and challenges. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

Other

Jump to: Research, Review

29 pages, 1595 KiB  
Systematic Review
Mechanical Properties of Additive-Manufactured Composite-Based Resins for Permanent Indirect Restorations: A Scoping Review
by Giny Judith Pot, Patricia Anna Van Overschelde, Filip Keulemans, Cornelis Johannes Kleverlaan and João Paulo Mendes Tribst
Materials 2024, 17(16), 3951; https://doi.org/10.3390/ma17163951 - 8 Aug 2024
Cited by 11 | Viewed by 3756
Abstract
The introduction of 3D printing technology in dentistry has opened new treatment options. The ongoing development of different materials for these printing purposes has recently enabled the production of definitive indirect restorations via 3D printing. To identify relevant data, a systematic search was [...] Read more.
The introduction of 3D printing technology in dentistry has opened new treatment options. The ongoing development of different materials for these printing purposes has recently enabled the production of definitive indirect restorations via 3D printing. To identify relevant data, a systematic search was conducted in three databases, namely PubMed, Scopus, and Web of Science. Additionally, a manual search using individual search terms was performed. Only English, peer-reviewed articles that encompassed in vitro or in vivo research on the mechanical properties of 3D-printed composite materials were included, provided they met the predefined inclusion and exclusion criteria. After screening 1142 research articles, 14 primary studies were selected. The included studies mainly utilized digital light processing (DLP) technology, less commonly stereolithography (SLA), and once PolyJet printing technology. The material properties of various composite resins, such as VarseoSmile Crown Plus (VSC) and Crowntec (CT), were studied, including Vickers hardness, flexural strength, elastic modulus, compressive strength, tensile strength, fracture resistance, and wear. The studies aimed to compare the behavior of the tested additive composites to each other, conventional composites, and subtractive-manufactured materials. This scoping review examined the mechanical properties of composites used for 3D printing of definitive restorations. The aim was to provide a comprehensive overview of the current knowledge on this topic and identify any gaps for future research. The findings suggest that 3D-printed composites are not yet the first option for indirect restorations, due to their insufficient mechanical properties. Due to limited evidence, more research is needed in this area. Specifically, there is a need for clinical trials and long-term in vivo research. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

Back to TopTop