Power Converters: Topology, Control, Reliability, and Applications

A special issue of Machines (ISSN 2075-1702). This special issue belongs to the section "Electrical Machines and Drives".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 1044

Special Issue Editor


E-Mail Website
Guest Editor
Power Electronics and Renewable Energy, University of Plymouth, Devon PL4 8AA, UK
Interests: power electronics reliability modelling and fault diagnosis; renewable energy applications; transportation electrification; artificial intelligence applications in electrical power systems; smart grid implementations and applications

Special Issue Information

Dear Colleagues,

Power electronics are considered, currently and ongoingly, the key driving elements for innovation in a broad range of application areas, including machinery drives, renewable energy conversion, transportation electrification, smart grid implementation, and energy storage systems.

The empowering role of power electronics across these areas leads to higher-technology and higher-value advantages for their systems; however, advanced design criteria, novel topology architecture, and reliable control techniques are required to meet such demanding requirements.

In view of that, The Guest Editors are inviting submissions to this Special Issue of Machines, titled “Power Converters: Topology, Control, Reliability, and Applications”. This Special Issue will focus on innovative architecture and implementation of power electronics in different applied sectors covering their modelling, designing, controlling, or protection. Submissions may include original research articles or comprehensive reviews.

Topics of interest include, but are not limited to, the following:

  • Innovative power converter design and topologies;
  • Advanced control techniques for power converters;
  • Reliability modelling of power electronic converters;
  • Application of power electronics in distributed generation and renewable energy sources;
  • Power converter implementations for grid-tied and smart grids;
  • Power electronics for energy storage system;
  • Application of power converters in electrifying the transport;
  • Utilization of artificial intelligence in industrial power electronic systems.

We look forward to your submissions.

Dr. Tamer Kamel
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Machines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • power converters topologies
  • power converters for renewable energy sources
  • fault diagnosis of power converters and their reliability
  • grid-tided power electronics
  • smart grid implementation
  • distributed power generation
  • innovative control for power converters
  • AI applications in power systems
  • transportation electrification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 9836 KiB  
Article
Cascaded H-Bridge Multilevel Converter Topology for a PV Connected to a Medium-Voltage Grid
by Hammad Alnuman, Essam Hussain, Mokhtar Aly, Emad M. Ahmed and Ahmed Alshahir
Machines 2025, 13(7), 540; https://doi.org/10.3390/machines13070540 - 21 Jun 2025
Viewed by 324
Abstract
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work [...] Read more.
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work at high voltage compared to other converter types, making them ideal for applications connected to medium-voltage grids whilst being compliant with grid codes and voltage ratings. Cascaded H-bridge multilevel converters (CHBs-MLC) are a type of MLC topology, and they does not need any capacitors or diodes for clamping like other MLC topologies. One of the problems in these types of converters involves the double-frequency harmonics in the DC linking voltage and power, which can increase the size of the capacitors and converters. The use of line frequency transformers for isolation is another factor that increases the system’s size. This paper proposes an isolated CHBs-MLC topology that effectively overcomes double-line frequency harmonics and offers isolation. In the proposed topology, each DC source (renewable energy source) supplies a three-phase load rather than a single-phase load that is seen in conventional MLCs. This is achieved by employing a multi-winding high-frequency transformer (HFT). The primary winding consists of a winding connected to the DC sources. The secondary windings consist of three windings, each supplying one phase of the load. This configuration reduces the DC voltage link ripples, thus improving the power quality. Photovoltaic (PV) renewable energy sources are considered as the DC sources. A case study of a 1.0 MW and 13.8 kV photovoltaic (PV) system is presented, considering two scenarios: variations in solar irradiation and 25% partial panel shedding. The simulations and design results show the benefits of the proposed topology, including a seven-fold reduction in capacitor volume, a 2.7-fold reduction in transformer core volume, a 50% decrease in the current THD, and a 30% reduction in the voltage THD compared to conventional MLCs. The main challenge of the proposed topology is the use of more switches compared to conventional MLCs. However, with advancing technology, the cost is expected to decrease over time. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

26 pages, 2815 KiB  
Article
Fractional-Order LC Three-Phase Inverter Using Fractional-Order Virtual Synchronous Generator Control and Adaptive Rotational Inertia Optimization
by Junhua Xu, Chunwei Wang, Yue Lan, Bin Liu, Yingheng Li and Yongzeng Xie
Machines 2025, 13(6), 472; https://doi.org/10.3390/machines13060472 - 29 May 2025
Viewed by 393
Abstract
The application of fractional calculus in power electronics modeling provides an innovative method for improving inverter performance. This paper presents a three-phase inverter topology with fractional-order LC filter characteristics, analyzes its frequency response, and develops mathematical models in both stationary and rotating reference [...] Read more.
The application of fractional calculus in power electronics modeling provides an innovative method for improving inverter performance. This paper presents a three-phase inverter topology with fractional-order LC filter characteristics, analyzes its frequency response, and develops mathematical models in both stationary and rotating reference frames. Based on these models, a dual closed-loop decoupling control strategy for voltage and current is designed to enhance system stability and dynamic performance. In the power control loop, fractional-order virtual synchronous generator control (FOVSG) is employed. Observations show that increasing the fractional-order of the rotor leads to a higher transient frequency variation rate. To address this, an adaptive rotational inertia control scheme is integrated into the FOVSG structure (ADJ-FOVSG), enabling real-time adjustment of inertia to suppress transient frequency fluctuations. Experimental results demonstrate that when the reference active power changes, ADJ-FOVSG effectively suppresses power overshoot. Compared to traditional VSG, ADJ-FOVSG reduces the power regulation time by approximately 34.5% and decreases the peak frequency deviation by approximately 37.2%. Compared to the adaptive rotational inertia control in traditional VSG, ADJ-FOVSG improves regulation time by about 24% and reduces peak frequency deviation by roughly 24.4%. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

Back to TopTop