A Skid Resistance Predicting Model for Single Carriageways
Abstract
1. Introduction
2. Literature Review
3. Pavement Management System of the Provincial Council of Gipuzkoa
4. Analysis Methodology
5. Results and Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Seg. | Year | Length (km) | Before Filtering | After Filtering | Difference of Mean After Filtering | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Data | Mean | Min. | Max. | Number of Data | Mean | Min. | Max. | ||||
1 | 2021 | 6.100 | 590 | 38.86 | 20.69 | 67.47 | 468 | 34.37 | 20.69 | 49.22 | 4.49 |
2 | 2021 | 0.500 | 51 | 40.81 | 25.26 | 86.87 | 47 | 38.12 | 25.26 | 52.64 | 2.68 |
3 | 2021 | 1.020 | 102 | 4425 | 21.83 | 77.74 | 91 | 42.13 | 21.83 | 54.92 | 2.12 |
4 | 2021 | 5.540 | 573 | 38.27 | 22.97 | 68.62 | 455 | 33.31 | 22.97 | 48.08 | 4.96 |
5 | 2021 | 3.900 | 396 | 59.95 | 36.67 | 82.31 | 318 | 57.17 | 36.67 | 67.47 | 2.78 |
6 | 2021 | 15.100 | 1536 | 60.42 | 32.10 | 107.41 | 1303 | 58.12 | 33.24 | 68.62 | 2.30 |
7 | 2021 | 3.700 | 371 | 60.34 | 41.23 | 98.28 | 309 | 57.48 | 41.23 | 68.62 | 2.86 |
8 | 2021 | 4.900 | 494 | 58.84 | 34.38 | 94.86 | 425 | 56.90 | 35.53 | 66.33 | 1.94 |
9 | 2021 | 1.600 | 162 | 53.39 | 43.51 | 74.32 | 135 | 50.36 | 43.51 | 60.63 | 3.03 |
10 | 2021 | 0.500 | 50 | 53.76 | 37.81 | 70.90 | 41 | 51.08 | 37.81 | 61.77 | 2.68 |
11 | 2021 | 1.200 | 112 | 51.99 | 33.24 | 70.90 | 93 | 49.41 | 33.24 | 60.63 | 2.57 |
12 | 2021 | 3.100 | 315 | 52.77 | 28.68 | 83.45 | 278 | 50.97 | 28.68 | 61.77 | 1.80 |
13 | 2021 | 11.200 | 1132 | 56.40 | 32.10 | 93.72 | 950 | 53.53 | 32.10 | 65.19 | 2.87 |
14 | 2021 | 8.700 | 885 | 52.52 | 24.12 | 77.74 | 755 | 50.27 | 27.54 | 60.63 | 2.25 |
15 | 2021 | 3.600 | 370 | 52.58 | 30.96 | 103.99 | 309 | 49.64 | 30.96 | 61.77 | 2.94 |
16 | 2021 | 0.600 | 56 | 48.59 | 37.81 | 58.35 | 43 | 46.72 | 37.81 | 52.64 | 1.86 |
17 | 2021 | 2.500 | 253 | 57.94 | 35.53 | 82.31 | 215 | 55.65 | 35.53 | 66.33 | 2.29 |
18 | 2021 | 1.300 | 121 | 59.17 | 30.96 | 89.15 | 109 | 58.66 | 36.67 | 66.33 | 0.51 |
19 | 2021 | 3.900 | 453 | 51.92 | 28.68 | 75.46 | 388 | 49.37 | 28.68 | 62.91 | 2.56 |
20 | 2021 | 3.900 | 485 | 50.25 | 32.10 | 78.88 | 407 | 47.33 | 32.10 | 59.49 | 2.92 |
21 | 2021 | 11.200 | 284 | 44.24 | 25.26 | 90.29 | 258 | 42.36 | 25.26 | 52.64 | 1.87 |
22 | 2021 | 15.100 | 301 | 53.77 | 28.68 | 108.55 | 260 | 49.04 | 28.68 | 67.47 | 4.72 |
23 | 2021 | 1.000 | 110 | 44.49 | 34.38 | 92.58 | 208 | 42.80 | 34.38 | 53.78 | 1.69 |
24 | 2021 | 1.400 | 131 | 47.12 | 35.53 | 92.58 | 119 | 45.53 | 35.53 | 53.78 | 1.59 |
25 | 2019 | 2.500 | 246 | 42.37 | 27.38 | 76.45 | 203 | 39.60 | 27.38 | 49.06 | 2.76 |
26 | 2019 | 2.200 | 227 | 55.13 | 31.95 | 70.74 | 192 | 53.08 | 31.95 | 63.90 | 2.05 |
27 | 2020 | 13.200 | 706 | 66.91 | 30.81 | 135.78 | 596 | 63.33 | 30.81 | 78.73 | 3.59 |
28 | 2020 | 2.500 | 15 | 50.81 | 47.92 | 57.05 | 14 | 50.37 | 47.92 | 52.49 | 0.45 |
29 | 2019 | 7.900 | 805 | 65.86 | 33.09 | 100.41 | 681 | 62.56 | 33.09 | 77.59 | 3.30 |
30 | 2019 | 3.700 | 376 | 60.40 | 3423 | 83.29 | 321 | 58.27 | 37.65 | 68.46 | 2.13 |
31 | 2019 | 4.400 | 443 | 78.06 | 35.37 | 106.12 | 386 | 76.28 | 42.22 | 90.14 | 1.78 |
32 | 2019 | 4.000 | 407 | 57.94 | 34.23 | 92.42 | 339 | 54.65 | 34.23 | 67.32 | 3.29 |
33 | 2019 | 7.000 | 721 | 54.92 | 29.67 | 100.41 | 600 | 51.28 | 29.67 | 65.04 | 3.64 |
34 | 2019 | 3.400 | 415 | 41.52 | 19.40 | 63.90 | 351 | 39.34 | 19.40 | 49.06 | 2.18 |
35 | 2019 | 5.100 | 538 | 41.27 | 11.41 | 57.05 | 475 | 39.92 | 17.12 | 49.06 | 1.35 |
36 | 2019 | 0.300 | 30 | 42.22 | 28.53 | 54.77 | 23 | 39.04 | 28.53 | 46.78 | 3.17 |
37 | 2019 | 9.400 | 955 | 57.68 | 33.09 | 95.85 | 839 | 55.65 | 33.09 | 67.32 | 2.03 |
38 | 2019 | 8.100 | 823 | 64.05 | 29.67 | 99.27 | 711 | 61.79 | 34.23 | 74.17 | 2.26 |
39 | 2019 | 8.500 | 861 | 71.01 | 33.09 | 112.96 | 726 | 66.76 | 33.09 | 84.44 | 4.25 |
40 | 2019 | 0.700 | 70 | 45.85 | 34.23 | 57.05 | 59 | 44.40 | 34.23 | 50.21 | 1.45 |
41 | 2019 | 10.000 | 1601 | 48.66 | 19.40 | 93.56 | 1315 | 44.26 | 19.40 | 60.47 | 4.40 |
42 | 2019 | 2.600 | 264 | 54.83 | 34.23 | 93.56 | 210 | 49.75 | 34.23 | 66.18 | 5.09 |
43 | 2019 | 6.100 | 618 | 66.96 | 37.65 | 104.97 | 510 | 63.41 | 37.65 | 77.59 | 3.55 |
44 | 2019 | 3.800 | 386 | 50.13 | 28.53 | 77.59 | 297 | 44.47 | 28.53 | 61.62 | 5.66 |
45 | 2019 | 5.000 | 515 | 63.83 | 36.51 | 103.83 | 453 | 61.16 | 36.51 | 74.17 | 2.67 |
46 | 2019 | 4.300 | 443 | 39.92 | 23.96 | 68.46 | 380 | 37.78 | 23.96 | 46.78 | 2.14 |
47 | 2019 | 6.400 | 653 | 72.78 | 33.09 | 104.97 | 562 | 69.84 | 33.09 | 84.44 | 2.94 |
48 | 2019 | 7.100 | 729 | 71.64 | 44.50 | 103.83 | 589 | 67.78 | 44.50 | 82.15 | 3.86 |
49 | 2020 | 5.400 | 551 | 57.96 | 18.26 | 81.01 | 469 | 57.03 | 28.53 | 68.46 | 0.93 |
50 | 2020 | 10.100 | 16 | 64.33 | 55.91 | 73.03 | 13 | 62.58 | 55.91 | 68.46 | 1.74 |
51 | 2020 | 6.700 | 686 | 64.51 | 37.65 | 95.85 | 578 | 61.35 | 37.65 | 75.31 | 3.16 |
52 | 2020 | 5.300 | 540 | 48.83 | 22.82 | 81.01 | 432 | 44.41 | 22.82 | 59.33 | 4.42 |
53 | 2020 | 4.500 | 264 | 63.40 | 29.67 | 77.59 | 404 | 62.55 | 29.67 | 69.60 | 5.09 |
54 | 2020 | 8.700 | 306 | 52.98 | 21.68 | 90.14 | 264 | 49.80 | 21.68 | 63.90 | 3.18 |
55 | 2020 | 19.100 | 332 | 46.07 | 19.40 | 90.14 | 275 | 41.06 | 19.40 | 60.47 | 5.01 |
56 | 2020 | 10.800 | 177 | 65.31 | 44.50 | 84.44 | 151 | 62.98 | 44.50 | 74.17 | 2.33 |
57 | 2020 | 4.500 | 458 | 62.71 | 28.53 | 119.81 | 419 | 61.26 | 28.53 | 74.17 | 1.45 |
58 | 2020 | 0.700 | 75 | 62.00 | 52.49 | 75.31 | 60 | 59.64 | 52.49 | 67.32 | 2.36 |
59 | 2020 | 0.500 | 52 | 56.48 | 43.36 | 70.74 | 44 | 55.00 | 43.36 | 60.47 | 1.48 |
60 | 2020 | 4.300 | 439 | 69.25 | 35.37 | 101.55 | 377 | 67.25 | 43.36 | 77.59 | 2.00 |
61 | 2020 | 9.000 | 914 | 63.03 | 29.67 | 91.28 | 778 | 60.28 | 33.09 | 73.03 | 2.75 |
62 | 2020 | 3.000 | 298 | 57.17 | 34.23 | 79.87 | 241 | 53.73 | 34.23 | 67.32 | 3.44 |
63 | 2020 | 9.300 | 949 | 55.23 | 29.67 | 93.56 | 790 | 50.96 | 29.67 | 67.32 | 4.27 |
64 | 2020 | 11.700 | 1189 | 72.87 | 34.23 | 99.27 | 1017 | 71.59 | 50.21 | 79.87 | 1.28 |
65 | 2020 | 4.000 | 410 | 55.75 | 35.37 | 86.72 | 337 | 51.76 | 35.37 | 66.18 | 3.99 |
66 | 2020 | 9.200 | 403 | 67.62 | 45.64 | 95.85 | 329 | 64.33 | 45.64 | 76.45 | 3.29 |
TOTAL | 366.500 | MEAN | 55.67 | MEAN | 53.07 | MEAN | 2.79 |
References
- Fernandes, A.; Neves, J. Threshold Values of Pavement Surface Properties for Maintenance Purposes Based on Accidents Modelling. Int. J. Pavement Eng. 2014, 15, 917–924. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Yin, C.; Oeser, M.; Steinauer, B. Influence of Different Polishing Conditions on the Skid Resistance Development of Asphalt Surface. Wear 2013, 308, 71–78. [Google Scholar] [CrossRef]
- Tamagusko, T.; Gomes Correia, M.; Ferreira, A. Machine Learning Applications in Road Pavement Management: A Review, Challenges and Future Directions. Infrastructures 2024, 9, 213. [Google Scholar] [CrossRef]
- Ban, I.; Deluka-Tibljaš, A.; Ruži’c, I.R. Skid Resistance Performance Assessment by a PLS Regression-Based Predictive Model with Non-Standard Texture Parameters. Lubricants 2024, 12, 23. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Ziolkowski, R.; Gonzalo-Orden, H. Evaluation of the Radar Speed Cameras and Panels Indicating the Vehicles’ Speed as Traffic Calming Measures (TCM) in Short Length Urban Areas Located Along Rural Roads. Energies 2021, 14, 8146. [Google Scholar] [CrossRef]
- Llopis-Castelló, D.; Findley, D.J. Influence of Calibration Factors on Crash Prediction on Rural Two-Lane Two-Way Roadway Segments. J. Transp. Eng. A Syst. 2019, 145, 04019024. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; King, M.; Shi, Q.; Wang, C.; Li, P. Identification Methods of Key Contributing Factors in Crashes with High Numbers of Fatalities and Injuries in China. Traffic Inj. Prev. 2016, 17, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.W.; Smith, K.L.; Titus-Glover, L.; Wambold, J.C.; Yager, T.J.; Rado, Z. Guide for Pavement Friction National Cooperative Highway Research Program NCHRP Project 01-43; Transportation Research Board: Washington, DC, USA, 2009. [Google Scholar]
- Lyon, C.; Persaud, B. Safety Effects of Targeted Program to Improve Skid Resistance. Transp. Res. Rec. 2008, 2068, 135–140. [Google Scholar] [CrossRef]
- AASHTO. Pavement Management Guide, 2nd ed.; AASHTO: Washington, DC, USA, 2012. [Google Scholar]
- Buddhavarapu, P.; Banerjee, A.; Prozzi, J.A. Influence of Pavement Condition on Horizontal Curve Safety. Accid. Anal. Prev. 2013, 52, 9–18. [Google Scholar] [CrossRef]
- Ongel, A.; Lu, Q.; Harvey, J. Frictional Properties of Asphalt Concrete Mixes. Proc. Inst. Civ. Eng. Transp. 2009, 162, 19–26. [Google Scholar] [CrossRef]
- Cafiso, S.; Montella, A.; D’Agostino, C.; Mauriello, F.; Galante, F. Crash Modification Functions for Pavement Surface Condition and Geometric Design Indicators. Accid. Anal. Prev. 2021, 149, 105887. [Google Scholar] [CrossRef]
- Araujo, V.M.C.; Bessa, I.S.; Castelo Branco, V.T.F. Measuring Skid Resistance of Hot Mix Asphalt Using the Aggregate Image Measurement System (AIMS). Constr. Build. Mater. 2015, 98, 476–481. [Google Scholar] [CrossRef]
- Abaza, K.A.; Murad, M.M. Prediction of Pavement Friction Using Markov Chain at the Project and Network Levels. Int. J. Pavement Eng. 2024, 25, 2371449. [Google Scholar] [CrossRef]
- Papageorgiou, G.; Mouratidis, A. Defining Threshold Values for Pavement Surface Characteristics. Proc. Inst. Civ. Eng. Transp. 2015, 168, 223–230. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, X.; Yang, Z. Effect of Mixture Design Parameters of Stone Mastic Asphalt Pavement on Its Skid Resistance. Appl. Sci. 2019, 9, 5171. [Google Scholar] [CrossRef]
- Moaveni, M.; Mahmoud, E.; Ortiz, E.M.; Tutumluer, E.; Beshears, S. Use of Advanced Aggregate Imaging Systems to Evaluate Aggregate Resistance to Breakage, Abrasion, and Polishing. Transp. Res. Rec. 2014, 2401, 1–10. [Google Scholar] [CrossRef]
- Peng, Y.; Li, J.Q.; Zhan, Y.; Wang, K.C. Finite Element Method-Based Skid Resistance Simulation Using In-Situ 3D Pavement Surface Texture and Friction Data. Materials 2019, 12, 3821. [Google Scholar] [CrossRef]
- Permanent International Association of Road Congress (PIARC). Report of the Committee on Surface Characteristics. In Proceedings of the XVIII World Road Association, Brussels, Belgium, 13–19 September 1987. [Google Scholar]
- Pérez-Acebo, H.; Isasa, M.; Gurrutxaga, I.; Alonso-Solórzano, Á. Analysis of the Skid Resistance Decrease in Bituminous Pavements in Dual-Carriageway Tunnels. Buildings 2024, 14, 3963. [Google Scholar] [CrossRef]
- Gao, J.; Fan, J.; Gao, C.; Song, L. Friction Prediction in Asphalt Pavements: The Role of Separated Macro-and Micro-Texture Parameters Under Dry and Wet Conditions. Lubricants 2025, 13, 138. [Google Scholar] [CrossRef]
- Wallman, C.-G.; Åström, H. Friction Measurement Methods and the Correlation Between Road Friction and Traffic Safety. A Literature Review; Swedish National Road and Transport Research Institute (VTI): Linköping, Sweden, 2001.
- Edmondson, V.; Woodward, J.; Lim, M.; Kane, M.; Martin, J.; Shyha, I. Improved Non-Contact 3D Field and Processing Techniques to Achieve Macrotexture Characterisation of Pavements. Constr. Build. Mater. 2019, 227, 116693. [Google Scholar] [CrossRef]
- Koné, A.; Es-Sabar, A.; Do, M.-T. Application of Machine Learning Models to the Analysis of Skid Resistance Data. Lubricants 2023, 11, 328. [Google Scholar] [CrossRef]
- Highways England. Design Manual for Roads and Bridges Pavement Inspection & Assessment CS 228 Skidding Resistance; Highways England: London, UK, 2021. [Google Scholar]
- Ministerio de Fomento. Orden FOM/2523/2014, de 12 de Diciembre, por la Que se Actualizan Determinados Artículos del Pliego de Prescripciones Técnicas Generas Para Obras de Carreteras y Puentes, Relativos a Materiales Básicos, a Firmes y Pavimentos, y a Senalización, Balizamiento y Sistemas de Contención de Vehículos; Ministerio de Fomento: Madrid, Spain, 2014.
- Pérez-Acebo, H.; Gonzalo-Orden, H.; Rojí, E. Skid Resistance Prediction for New Two-Lane Roads. Proc. Inst. Civ. Eng. Transp. 2019, 172, 264–273. [Google Scholar] [CrossRef]
- Kokkalis, A.G. Prediction of Skid Resistance from Texture Measurements. Proc. Inst. Civ. Eng. Transp. 1998, 129, 85–93. [Google Scholar] [CrossRef]
- Kandji, M.; Fournier, B.; Duchesne, J.; Doucet, F. Effect of Polishing Time, Mechanisms and Mineralogy on the Microtexture Evolution and Polishing Resistance of Pavement Surface Aggregates. Constr. Build. Mater. 2025, 476, 141105. [Google Scholar] [CrossRef]
- Jellie, J.H. A Study of Factors Affecting Skid Resistance Characteristics; University of Ulster: Jordanstown, UK, 2003. [Google Scholar]
- Achútegi Viada, F. Características Superficiales de los Firmes de Carretera; Centro de Estudios de Experimentación de Obras Publicas CEDEX, Ed.; Ministerio de Fomento: Madrid, Spain, 2005.
- Navarro, J.A.; Luzuriaga, S.; Arnáiz, J.; Ruiz, A. Bitumen Wearing Course and Resistance to Sliding. Carreteras 2011, 180, 37–51. [Google Scholar]
- Woodward, W.D.H.; Woodside, A.R.; Jellie, J.H. Early and Mid Life SMA Skid Resistance. In Proceedings of the International Conference on Surface Friction, Christchurch, New Zealand, 1–4 May 2005. [Google Scholar]
- Wilson, D.J. An Analysis of the Seasonal and Short-Term Variation of Road Pavement Skid Resistance; University of Auckland: Auckland, New Zealand, 2006. [Google Scholar]
- Burchett, J.L.; Rizenbergs, R.L. Seasonal variations in the skid resistance of pavement in Kentucky. Transp. Res. Rec. 1979, 788, 6–14. [Google Scholar]
- Echaveguren, T.; de Solminihac, H. Seasonal Variability of Skid Resistance in Paved Roadways. Proc. Inst. Civ. Eng. Transp. 2011, 164, 23–32. [Google Scholar] [CrossRef]
- Rogers, M.P.; Gargett, T. A Skidding Resistance Standard for the National Road Network. Highways Transp. 1991, 38, 10–13. [Google Scholar]
- Hosking, J.; Woodford, G. Measurement of Skid Resistance Part II. Factors Affecting the Slipperiness of a Road Surface TRRL Laboratory Report 738; Transport and Road Research Laoratory: Crowthorne, UK, 1976. [Google Scholar]
- Salt, G.F. Research on Skid-Resistance at the Transport and Road Research Laboratory (1927–1977). Transp. Res. Rec. 1977, 622, 26–38. [Google Scholar]
- Li, J.; Yu, J.; Xie, J.; Ye, Q. Performance Degradation of Large-Sized Asphalt Mixture Specimen under Heavy Load and Its Affecting Factors Using Multifunctional Pavement Material Tester. Materials 2019, 12, 3814. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.K.; Young, A.E.; Butler, I.C. Measurement of Skidding Resistance and Surface Texture and the Use of Results in the United Kingdom. ASTM Spec. Tech. Publ. 1990, STP1031-EB, 87–102. [Google Scholar] [CrossRef]
- Szatkowski, W.S.; Hosking, J.R. The Effect of Traffic and Aggregate on the Skidding Resistance of Bituminous Surfacing TRRL Report LR 504; Transport and Road Research Laboratory: Crowthorne, UK, 1972. [Google Scholar]
- Haas, R.; Hudson, W.R.; Falls, L.C. Pavement Asset Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kulkarni, R.B.; Miller, R.W. Pavement Management Systems: Past, Present, and Future. Transp. Res. Rec. 2003, 1853, 65–71. [Google Scholar] [CrossRef]
- Wu, Y.; Pang, Y.; Zhu, X. Evolution of Prediction Models for Road Surface Irregularity: Trends, Methods and Future. Constr. Build. Mater. 2024, 449, 138316. [Google Scholar] [CrossRef]
- Gurrutxaga, I.; Alonso-Solórzano, Á.; Isasa, M.; Pérez-Acebo, H. IRI Performance Models for Flexible, Semi-Rigid and Composite Pavements in Double-Carriageway Roads. Civ. Eng. J. 2025, 11, 1712–1738. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Linares-Unamunzaga, A.; Abejón, R.; Rojí, E. Research Trends in Pavement Management during the First Years of the 21st Century: A Bibliometric Analysis during the 2000-2013 Period. Appl. Sci. 2018, 8, 1041. [Google Scholar] [CrossRef]
- Justo-Silva, R.; Ferreira, A.; Flintsch, G.; De Blasiis, M.R. Review on Machine Learning Techniques for Developing Pavement Performance Prediction Models. Sustainability 2021, 13, 5248. [Google Scholar] [CrossRef]
- Echaveguren, T.; de Solminihac, H.; Chamorro, A. Long-Term Behaviour Model of Skid Resistance for Asphalt Roadway Surfaces. Can. J. Civ. Eng. 2010, 37, 719–727. [Google Scholar] [CrossRef]
- Nicolosi, V.; D’Apuzzo, M.; Evangelisti, A.; Augeri, M. A New Methodological Approach for Road Friction Deterioration Models Development Based on Energetic Road Traffic Characterization. Transp. Eng. 2024, 16, 100251. [Google Scholar] [CrossRef]
- Cenek, P.D.; Henderson, R.J.; Davies, R.B. Selection of Aggregates for Skid Resistance; NZ Transport Agency: Wellington, New Zealand, 2012.
- Li, L.; Guler, S.I.; Donnell, E.T. Pavement Friction Degradation Based on Pennsylvania Field Test Data. Transp. Res. Rec. 2017, 2639, 11–19. [Google Scholar] [CrossRef]
- Rith, M.; Kim, Y.K.; Lee, S.W. Characterization of Long-Term Skid Resistance in Exposed Aggregate Concrete Pavement. Constr. Build. Mater. 2020, 256, 119423. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Gonzalo-Orden, H.; Findley, D.J.; Rojí, E. A Skid Resistance Prediction Model for an Entire Road Network. Constr. Build. Mater. 2020, 262, 120041. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Montes-Redondo, M.; Appelt, A.; Findley, D.J. A Simplified Skid Resistance Predicting Model for a Freeway Network to Be Used in a Pavement Management System. Int. J. Pavement Eng. 2023, 24, 202066. [Google Scholar] [CrossRef]
- Galvis Arce, O.D.; Zhang, Z. Skid Resistance Deterioration Model at the Network Level Using Markov Chains. Int. J. Pavement Eng. 2021, 22, 118–126. [Google Scholar] [CrossRef]
- Fülöp, I.A.; Bogárdi, I.; Gulyás, A.; Csicsely-Tarpay, M. Use of Friction and Texture in Pavement Performance Modeling. J. Transp. Eng. 2000, 126, 243–248. [Google Scholar] [CrossRef]
- Cenek, P.D.; Carpenter, P.; Jamieson, N.; Stewart, P. Prediction of Skid Resistance Performance of Chip Seal Roads; Research Report No. 256; Transfund New Zealand: Wellington, New Zealand, 2004.
- WDM Ltd. Investigation into the Relationship between Aggregate Polished Stone Value and Wet Skid Resistance; Project PR3-0154; WDM Ltd.: Wellington, New Zealand, 1998. [Google Scholar]
- Shamsaei, M.; Carter, A.; Vaillancourt, M. Using Construction and Demolition Waste Materials to Develop Chip Seals for Pavements. Infrastructures 2023, 8, 95. [Google Scholar] [CrossRef]
- El-Ashwah, A.S.; Abdelrahman, M. Relating Aggregate Friction Properties to Asphalt Pavement Friction Loss through Laboratory Testing, Statistical Analysis, and Machine Learning Insights. Int. J. Pavement Eng. 2025, 26, 2456739. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, Z.; Wang, Z. Evaluating the Anti-Skid Performance of Asphalt Pavements with Basalt and Limestone Composite Aggregates: Testing and Prediction. Buildings 2024, 14, 2339. [Google Scholar] [CrossRef]
- Chen, B.; Xiong, C.; Li, W.; He, J.; Zhang, X. Assessing Surface Texture Features of Asphalt Pavement Based on Three-Dimensional Laser Scanning Technology. Buildings 2021, 11, 623. [Google Scholar] [CrossRef]
- Dai, G.; Luo, Z.; Chen, M.; Zhan, Y.; Ai, C. Reconstruction and Intelligent Evaluation of Three-Dimensional Texture of Stone Matrix Asphalt-13 Pavement for Skid Resistance. Lubricants 2023, 11, 535. [Google Scholar] [CrossRef]
- Xu, G.; Lin, X.; Wang, S.; Zhan, Y.; Liu, J.; Huang, H. Incep-FrictionNet-Based Pavement Texture Friction Level Classification Prediction Method. Lubricants 2024, 12, 8. [Google Scholar] [CrossRef]
- Yang, G.; Chen, K.-T.; Wang, K.; Li, J.; Zou, Y. Field Study of Asphalt Pavement Texture and Skid Resistance under Traffic Polishing Using 0.01 Mm 3D Images. Lubricants 2024, 12, 256. [Google Scholar] [CrossRef]
- Zhan, Y.; Nie, Z.; Lin, X.; Zhang, A.A.; Ai, C. Hybrid Prediction Model for the Friction Performance of Asphalt Pavements by Combining Multi-Scale Decomposition and Transformer Network. Eng. Appl. Artif. Intell. 2025, 155, 110896. [Google Scholar] [CrossRef]
- Aretoulis, N.; Liu, X.; Yin, C. 3D Reconstruction of Asphalt Pavement Macro-Texture Based on Convolutional Neural Network and Monocular Image Depth Estimation. Appl. Sci. 2025, 15, 4684. [Google Scholar] [CrossRef]
- Wang, G.; Wang, K.C.P.; Yang, G. Intelligent Evaluation of Pavement Friction at High Speeds with Artificial Intelligence Powered Three-Dimensional Laser Imaging Technology. Eng. Appl. Artif. Intell. 2025, 150, 110580. [Google Scholar] [CrossRef]
- Departamento de Infraestructuras Viarias y Estrategia Territorial. Información de Aforos En Las Carreteras de Gipuzkoa Hasta 2023; Diputación Foral de Gipuzkoa/Gipuzkoako Foru Aldundia: Donostia-San Sebastián, Spain, 2023.
- Ministerio de Fomento. FOM/3460/2003, de 28 de Noviembre, Por La Que Se Aprueba La Norma 6.1-IC “Secciones de Firme”, de La Instrucción de Carreteras; Ministerio de Fomento: Madrid, Spain, 2003.
- Pérez-Acebo, H.; Gonzalo-Orden, H.; Findley, D.J.; Rojí, E. Modeling the International Roughness Index Performance on Semi-Rigid Pavements in Single Carriageway Roads. Constr. Build. Mater. 2021, 272, 121665. [Google Scholar] [CrossRef]
- AENOR. AENOR UNE-CEN/TS-15901-7:2010. Características Superficiales de Carreteras y Aeropuertos. Parte 7: Procedimiento Para 588 Determinar La Resistencia Al Desliza-Miento de La Superficie de Un Pavimento Utilizando Un Equipo Con El Ratio de De- 589 Slizamiento Longitudinal Fijo (CRLG): GripTester; AENOR: Madrid, Spain, 2010. [Google Scholar]
- Mohammadi, A.; Amador-Jimenez, L.; Elsaid, F. Simplified Pavement Performance Modeling with Only Two-Time Series Observations: A Case Study of Montreal Island. J. Transp. Eng. Part B Pavements 2019, 145, 05019004. [Google Scholar] [CrossRef]
- Alonso-Solorzano, A.; Perez-Acebo, H.; Findley, D.J.; Gonzalo-Orden, H. Transition Probability Matrices for Pavement Deterioration Modelling with Variable Duty Cycle Times. Int. J. Pavement Eng. 2023, 24, 2278694. [Google Scholar] [CrossRef]
- Abdelaziz, N.; Abd El-Hakim, R.T.; El-Badawy, S.M.; Afify, H.A. International Roughness Index Prediction Model for Flexible Pavements. Int. J. Pavement Eng. 2020, 21, 88–99. [Google Scholar] [CrossRef]
- Osorio-Lird, A.; Chamorro, A.; Videla, C.; Tighe, S.; Torres-Machi, C. Application of Markov Chains and Monte Carlo Simulations for Developing Pavement Performance Models for Urban Network Management. Struct. Infrastruct. Eng. 2018, 14, 1169–1181. [Google Scholar] [CrossRef]
- Deng, H. Traffic-Forecasting Model with Spatio-Temporal Kernel. Electronics 2025, 14, 1410. [Google Scholar] [CrossRef]
- Pérez-López, C. Técnicas Estadísticas Predictivas Con IBM SPSS; Ibergaceta Publicaciones S.L.: Madrid, Spain, 2014. [Google Scholar]
- Khasawneh, M.A. Laboratory Study on the Frictional Properties of HMA Specimens Using a Newly Developed Asphalt Polisher. Int. J. Civ. Eng. 2017, 15, 1007–1017. [Google Scholar] [CrossRef]
- Rezaei, A.; Masad, E. Experimental-Based Model for Predicting the Skid Resistance of Asphalt Pavements. Int. J. Pavement Eng. 2013, 14, 24–35. [Google Scholar] [CrossRef]
Texture Level | Wavelength, λ (mm) | Amplitude, A (mm) |
---|---|---|
Micro-texture | 0 < λ < 0.5 | 0.01 < A < 0.5 |
Macro-texture | 0.5 < λ < 50 | 0.1 < A < 20 |
Mega-texture | 50 < λ < 500 | 1 < A < 50 |
Roughness or unevenness | λ > 500 | 1 < A < 200 |
Pavement Surface Characteristics | Vehicle Factors | Tire Properties | Environment |
---|---|---|---|
1. Micro-texture 2. Macro-texture 3. Material properties 4. Mega-texture/unevenness 5. Temperature | Slip speed, as a function of: 1. Vehicle speed 2. Slip ratio 3. Driving maneuver 3a. Turning 3b. Overtaking | 1. Tread design and condition 2. Inflation pressure 3. Rubber composition and hardness 4. Foot print 5. Load 6. Temperature | 1. Temperature 2. Water (rainfall, condensation) 3. Snow and ice 4. Contaminants (salt, sand, dirt, mud) 5. Wind |
Authors | Model | R2 |
---|---|---|
Szatkowski and Hosking [43] | (2) | 0.92 |
WDM Ltd. [60] | (3) | 0.28 |
Cenek et al. [59] | (4) | 0.38 |
Perez-Acebo et al. (2020) [55] | (5) | 0.696 |
Perez-Acebo et al. (2023) [56] | 0.405 | |
Rith [54] | (7) | 0.81 |
Year | Number of Segments |
---|---|
2019 | 22 |
2020 | 20 |
2021 | 24 |
TOTAL | 66 |
Variable | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
MSSC | 33.31 | 76.28 | 53.07 | 9.53 |
AADT | 139 | 24,506 | 5499.73 | 5179.80 |
AADT.HV | 7 | 3371.2 | 452.40 | 653.14 |
AADT.LV | 130 | 23,771 | 5047.32 | 4769.05 |
Variables | R | p-Value |
---|---|---|
AADT | −0.554 | <0.001 |
AADT.HV | −0.560 | <0.001 |
AADT.LV | −0.525 | <0.001 |
Type of Transformation | AADT (R2) | AADT.HV (R2) | AADT.LV (R2) |
---|---|---|---|
Linear | 0.306 | 0.314 | 0.275 |
Logarithm | 0.378 | 0.382 | 0.364 |
Inverse | 0.141 | 0.117 | 0.141 |
Quadratic | 0.392 | 0.363 | 0.369 |
Cubic | 0.423 | 0.417 | 0.413 |
Potential | 0.369 | 0.390 | 0.352 |
Exponential | 0.309 | 0.367 | 0.271 |
Model | R2 | Notes |
---|---|---|
MSSC = Int + AADT + AADT.HV | 0.372 | All variables are significant. |
MSSC = Int + AADT + LogAADT.HV | 0.382 | AADT is not significant. |
MSSC = Int + LogAADT + AADT.HV | 0.439 | All variables are significant. |
MSSC = Int + LogAADT + LogAADT.HV | 0.382 | LogAADT.HV is not significant. |
MSSC = Int + LogAADT + AADT.HV2 | 0.445 | AADT.HV2 is not significant. |
MSSC = Int + AADT2 + LogAADT.HV | 0.386 | AADT2 is not significant. |
MSSC = Int + LogAADT + ExpAADT.HV | 0.436 | Variables are not significant. |
MSSC = Int + LogAADT + AADT.HV + LogAADT.LV | 0.439 | LogAADT is not significant |
Degrees of Freedom | Sum of Squares | Mean Squares | F | p-Value | Durbin–Watson | |
---|---|---|---|---|---|---|
Model | 2 | 2627.767 | 1313.884 | 24.631 | <0.001 | 1.845 |
Residuals | 63 | 3360.645 | 53.344 | |||
Total | 65 | 5988.412 |
Variable | Parameter Estimates | Std. Error | t-Value | p-Value | Standardized Coefficient | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Intercept | 83.661 | 7.268 | 11.511 | <0.001 | 69.137 | 98.185 | |
LogAADT | −8.138 | 2.174 | −3.743 | <0.001 | −0.436 | −12.483 | −3.793 |
AADT.HV | −0.004 | 0.002 | −2.619 | 0.011 | −0.305 | −0.008 | −0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isasa, M.; Alonso-Solórzano, Á.; Gurrutxaga, I.; Pérez-Acebo, H. A Skid Resistance Predicting Model for Single Carriageways. Lubricants 2025, 13, 365. https://doi.org/10.3390/lubricants13080365
Isasa M, Alonso-Solórzano Á, Gurrutxaga I, Pérez-Acebo H. A Skid Resistance Predicting Model for Single Carriageways. Lubricants. 2025; 13(8):365. https://doi.org/10.3390/lubricants13080365
Chicago/Turabian StyleIsasa, Miren, Ángela Alonso-Solórzano, Itziar Gurrutxaga, and Heriberto Pérez-Acebo. 2025. "A Skid Resistance Predicting Model for Single Carriageways" Lubricants 13, no. 8: 365. https://doi.org/10.3390/lubricants13080365
APA StyleIsasa, M., Alonso-Solórzano, Á., Gurrutxaga, I., & Pérez-Acebo, H. (2025). A Skid Resistance Predicting Model for Single Carriageways. Lubricants, 13(8), 365. https://doi.org/10.3390/lubricants13080365