Previous Issue
Volume 13, September
 
 

Lubricants, Volume 13, Issue 10 (October 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 3344 KB  
Article
Grease Film Behavior in Ball Bearings
by Denis Cojocaru, Gelu Ianuș, Vlad Cârlescu, Bogdan Chiriac and Dumitru Olaru
Lubricants 2025, 13(10), 429; https://doi.org/10.3390/lubricants13100429 - 25 Sep 2025
Abstract
To the film thicknesses of grease-lubricated ball bearings, the viscosity of the base oil is considered in the Elastohydrodynamic Lubrication (EHL) equations. For very low speeds, the grease film thickness is much larger than the calculated base oil film thickness. Initially, the grease [...] Read more.
To the film thicknesses of grease-lubricated ball bearings, the viscosity of the base oil is considered in the Elastohydrodynamic Lubrication (EHL) equations. For very low speeds, the grease film thickness is much larger than the calculated base oil film thickness. Initially, the grease film thickness decreases with speed to a minimum value, followed by an increase, thus generating a “V-shape pattern”. To evidence this behavior of grease film in a ball bearing, the authors used the method of measuring electrical resistance. Using an oil with a viscosity close to a grease base oil viscosity, a relationship was obtained between the electrical resistance of the ball bearing and the average film thickness in the ball–race contacts. Based on this relationship, the variation in the grease film thickness was obtained by measuring electrical resistance at a bearing speed between 1 and 500 rpm for short running periods of 60 s. A “V-shape pattern” was evidenced with a minimum value of grease film thickness at around 10 rpm. Additionally, the electrical resistance methodology was considered, evidencing the good stability of the film thickness for long operation time at speeds between 200 rpm and 1500 rpm. After 8 running hours, minor fragmentation of the soap filaments was observed under the scanning electron microscope compared to the fresh grease structure, without affecting the thickness of the grease film. Full article
Show Figures

Figure 1

16 pages, 10621 KB  
Article
Effect of Graphite Content on Mechanical Properties and High-Temperature Tribological Behavior of Cu-Ni-Sn-Mo-Gr Self-Lubricating Composites
by Zhen Li, Jingde Liu, Songlin Lu, Fuyan Liu, Guirong Yang and Jingbo Wang
Lubricants 2025, 13(10), 428; https://doi.org/10.3390/lubricants13100428 - 24 Sep 2025
Abstract
Copper matrix self-lubricating composites are critical for high-temperature industrial applications. In this study, Cu-Ni-Sn-Mo-Gr composites with 3–7 wt.% graphite were fabricated via spark plasma sintering (SPS). The influence of graphite content on microstructure, mechanical properties, and tribological behavior from room temperature (RT) to [...] Read more.
Copper matrix self-lubricating composites are critical for high-temperature industrial applications. In this study, Cu-Ni-Sn-Mo-Gr composites with 3–7 wt.% graphite were fabricated via spark plasma sintering (SPS). The influence of graphite content on microstructure, mechanical properties, and tribological behavior from room temperature (RT) to 500 °C were systematically investigated. The results demonstrate that increasing graphite content progressively reduces density, hardness, and yield strength, whereas it significantly enhances high-temperature tribological performance. The composites with 7 wt.% graphite addition achieve outstanding self-lubricity and wear resistance across the RT-500 °C, achieving an average friction coefficient of 0.09 to 0.21 and a wear rate of 1.32 × 10−6 to 7.52 × 10−5 mm3/N·m. Crucially, temperature-dependent lubrication mechanisms govern performance: graphite-dominated films enable friction reduction at RT, while synergistic hybrid films of graphite and in situ-formed metal oxides (Cu2O, CuO, NiO) sustain effective lubrication at 300–500 °C. Full article
Show Figures

Figure 1

15 pages, 1726 KB  
Article
Nano Oil Additive Improves Internal Combustion Engine Efficiency and Life Expectancy
by Ding Lou, Jordan Morrison, Greg Christensen, Craig Bailey, Rose Gerani, Aaron Nardi and Rob Hrabe
Lubricants 2025, 13(10), 427; https://doi.org/10.3390/lubricants13100427 - 24 Sep 2025
Abstract
Internal combustion engines remain a predominant source of global energy consumption, contributing substantially to both operational costs and greenhouse gas emissions. This work evaluates a nanomaterial-based engine oil additive that reduces friction and wear and increases torque, horsepower, and fuel efficiency. This novel [...] Read more.
Internal combustion engines remain a predominant source of global energy consumption, contributing substantially to both operational costs and greenhouse gas emissions. This work evaluates a nanomaterial-based engine oil additive that reduces friction and wear and increases torque, horsepower, and fuel efficiency. This novel nano oil additive contains functionalized carbon nanotubes and hexagonal boron nitride nanosheets that are dispersed in base oil using a proprietary ultrasonication process. Block-on-ring tests performed by multiple testing facilities demonstrated up to a 17% decrease in coefficient of friction and up to a 78% decrease in wear compared to the base oil after treating with the nano oil additive. Thermal properties enhancement by the nano oil additive was evaluated and increases up to 17 °C in thermal stability were obtained. Additionally, the nano oil additive increased torque and horsepower by an average of 7% in motorcycles and 2.4% in pickup trucks. Most importantly, the nano oil additive demonstrated improvements in fuel economy in both gasoline and diesel engines, with laboratory tests reporting 3–5% increases and practical field tests on a commercial truck fleet reporting an average of a 6% increase. The improved engine efficiency leads to reduced turbo temperature in heavy diesel engines and prolonged engine life expectancy and will significantly improve global environmental sustainability. Full article
(This article belongs to the Special Issue Recent Advances in Automotive Powertrain Lubrication)
Show Figures

Figure 1

23 pages, 18904 KB  
Article
Influence Factor Analysis and Uncertainty Quantification of the Static Characteristics of Organic Working Fluid Aerodynamic Journal Bearings Considering Microscale Effect
by Ming Liu, Qiuwan Du, Shanfang Huang, Xiao Yan, Xinan Chen, Shuaijie Shi and Cheng Zhang
Lubricants 2025, 13(10), 426; https://doi.org/10.3390/lubricants13100426 - 23 Sep 2025
Abstract
The organic working fluid journal bearing is expected to enhance organic Rankine cycle system compactness significantly. In order to serve the practical application of organic working fluid bearings, this study analyzes the influence of key design parameters on the static characteristics under microscale [...] Read more.
The organic working fluid journal bearing is expected to enhance organic Rankine cycle system compactness significantly. In order to serve the practical application of organic working fluid bearings, this study analyzes the influence of key design parameters on the static characteristics under microscale effects. Uncertainty quantification is performed using three methods to address operational deviations. The results reveal the correlations for static characteristic indicators with design parameters in detail. Rarefied gas effects cause negligible pressure deviations (<0.21%), whereas surface roughness significantly improves load capacity. Sensitivity analyses (Morris and Sobol methods) identify eccentricity ratio and gas film thickness as the most influential parameters. KDE results indicate near-normal probability distributions for load and attitude angle. This study provides valuable insights for the design optimization and operational control of organic fluid bearings. Full article
(This article belongs to the Special Issue Gas Lubrication and Dry Gas Seal, 2nd Edition)
Show Figures

Figure 1

17 pages, 2309 KB  
Article
A Real-Time Dynamic Temperature Prediction Method for Double-Steel Plates in Wet Clutches
by Zhigang Zhang, Yongle Liu and Xiaoxia Yu
Lubricants 2025, 13(10), 425; https://doi.org/10.3390/lubricants13100425 - 23 Sep 2025
Abstract
Wet clutches are extensively employed in automotive transmission systems due to their benefits of smooth shift and stable operation. However, existing methodologies have not yet thoroughly analyzed the real-time dynamic temperature distribution of wet clutches, and the heating and heat transfer mechanisms during [...] Read more.
Wet clutches are extensively employed in automotive transmission systems due to their benefits of smooth shift and stable operation. However, existing methodologies have not yet thoroughly analyzed the real-time dynamic temperature distribution of wet clutches, and the heating and heat transfer mechanisms during the sliding friction process of friction pairs remain underexplored. To address these gaps, this study proposes a real-time dynamic temperature prediction model for wet clutches and investigates the heat generation and transfer mechanisms in the friction pair sliding process. Specifically, the heat production and exchange dynamics of the wet clutch friction pair are systematically analyzed, followed by an examination of the real-time temperature variation of the separator plate under both high-slip and low-slip speed conditions. In the numerical simulations, the predicted temperature values from the proposed model demonstrate excellent agreement with experimental measurements, with dynamic peak temperature discrepancies remaining within ±2 °C. Furthermore, the validated temperature evolution laws are corroborated by experimental results obtained from a dedicated wet clutch performance test rig, thereby providing comprehensive empirical verification of the proposed real-time dynamic temperature prediction framework for wet clutch separator plates. In summary, the model can accurately capture the temperature variation characteristics of wet clutches under different operating conditions, providing a reliable basis for real-time thermal management of transmission systems. It holds significant practical value for optimizing cooling system design, extending clutch service life, and ensuring shifting quality in vehicles. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop