Plant-Derived Natural Products and Their Biomedical Properties: 2nd Edition

A special issue of Life (ISSN 2075-1729). This special issue belongs to the section "Pharmaceutical Science".

Deadline for manuscript submissions: 15 November 2025 | Viewed by 1024

Special Issue Editors


E-Mail Website
Guest Editor
Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 70 El. Venizelou Ave., 17676 Kallithea, Athens, Greece
Interests: molecular nutrition; inflammation; oxidative stress; phytochemicals; nutraceuticals; functional foods; clinical trials; obesity; epigenetics; microRNAs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are very happy to announce a Special Issue, titled "Plant-Derived Natural Products and Their Biomedical Properties", that is being prepared for Life.

Plant-derived natural products have been well known since antiquity for their beneficial effects on human health, and have been utilized in pain management, gut health, skin issues, etc. Since then, they have attracted the interest of the scientific community, leading to the identification, isolation, and quantification of their compounds, as well as the study of their biomedical properties. Plant-derived natural products have been found to be rich in phytochemicals, such as terpenes and phenolic compounds, with proven antioxidant, anti-inflammatory, antimicrobial, antitumor, and prebiotic properties through numerous in vitro and in vivo studies. Therefore, they have been suggested as potential candidates for the therapeutic management of several chronic diseases, including inflammatory bowel disease, diabetes, non-alcoholic fatty liver disease, arthritis, and cancer, where inflammation, oxidative stress, and dysbiosis mechanisms are implicated. Furthermore, given the increased economic burden, the side effects, and the low compliance rates of patients with standard medical treatments, plant-derived natural products could possibly serve as adjunct therapeutic agents for chronic diseases.

The aim of this Special Issue is to address recent advances in the research of plant-derived natural products, their mechanisms of action, and how they can influence health and disease.

Experts interested in this Special Issue are invited to submit original manuscripts and reviews addressing the abovementioned aspects.

Dr. Efstathia Papada
Dr. Charalampia Amerikanou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Life is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant-derived natural products
  • phytochemicals
  • antioxidants
  • inflammation
  • therapeutic agent

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1631 KB  
Article
Biological Potential of Hypericum L. Sect. Drosocarpium Species
by Nebojša Kladar, Branislava Srđenović Čonić, Goran Anačkov, Maja Hitl, Bojana Bokić, Boris Radak and Milica Rat
Life 2025, 15(8), 1332; https://doi.org/10.3390/life15081332 - 21 Aug 2025
Viewed by 215
Abstract
The limited data on biological potential of the genus Hypericum sect. Drosocarpium species initiated the current research aimed at the chemical characterization of samples of six selected taxa (H. barbatum, H. montbretii, H. richerii subsp. grisebachii, H. rochelii, [...] Read more.
The limited data on biological potential of the genus Hypericum sect. Drosocarpium species initiated the current research aimed at the chemical characterization of samples of six selected taxa (H. barbatum, H. montbretii, H. richerii subsp. grisebachii, H. rochelii, H. rumeliacum, and H. spruneri) and the evaluation of their biological potential (antioxidant and antihyperglycaemic potential, acetylcholinesterase and monoamine oxidases inhibition). The obtained results suggest greater abundance of biologically active compounds, hypericin (H. rochelii, H. barbatum, and H. richerii subsp. grisebachii), amentoflavone (H. richerii subsp. grisebachii), quercetin and rutin (H. richerii subsp. grisebachii), and chlorogenic acid (H. richerii subsp. grisebachii, H. barbatum, H. rumeliacum), when compared to H. perforatum. Also, the scavenging potential of DPPH (median RSC50 = 3.34 µg/mL), NO (median RSC50 = 26.47 µg/mL) and OH radicals (median RSC50 = 76.87 µg/mL) of evaluated species was higher, or at least comparable to H. perforatum, while the same trend was noticed in the case of anti-MAO-A (median IC50 = 19.41 µg/mL) and antihyperglycaemic potential (inhibition of α-amylase and α-glucosidase (median IC50 = 29.47 µg/mL)). The study results highlight sect. Drosocarpium species as a valuable source of biologically active secondary metabolites and suggest a wide spectrum of possible applications in the food and medicine industries. Full article
Show Figures

Figure 1

22 pages, 5021 KB  
Article
Luteolin-Rich Extract from Harrisonia perforata (Blanco) Merr. Root Alleviates SARS-CoV-2 Spike Protein-Stimulated Lung Inflammation via Inhibition of MAPK/NLRP3 Inflammasome Signaling Pathways
by Warathit Semmarath, Punnida Arjsri, Kamonwan Srisawad, Sonthaya Umsumarng and Pornngarm Dejkriengkraikul
Life 2025, 15(7), 1077; https://doi.org/10.3390/life15071077 - 5 Jul 2025
Viewed by 541
Abstract
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need [...] Read more.
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need for effective therapeutic strategies to mitigate spike protein-stimulated lung inflammation, we examined the anti-inflammatory properties of luteolin and ethanolic extract from Harrisonia perforata (Blanco) Merr. root. The ethanolic extract of H. perforata root (HPEE) contained a high concentration of luteolin flavonoid (143.53 ± 1.58 mg/g extract). Both HPEE (25–100 μg/mL) and luteolin (4.5–36 μM) significantly inhibited inflammation stimulated by the Wuhan (W) and Omicron (O) spike protein S1, as evidenced by a dose-dependent significant decrease in IL-6, IL-1β, and IL-18 secretion in A549 lung epithelial cells (p < 0.05). Furthermore, pretreatment with HPEE or luteolin prior to spike protein exposure (100 ng/mL) significantly, in a dose-dependent manner, repressed the inflammatory mRNA expression (p < 0.05). Mechanistic study revealed that HPEE and luteolin suppressed NLRP3 inflammasome signaling activation by reducing their machinery protein expressions. Additionally, they inhibited the ERK/JNK/p38 MAPK signaling activation, resulting in decreased inflammatory mRNA expression and cytokine release. These findings suggest that H. perforata root extract and its major flavonoid luteolin exert potent anti-inflammatory effects and may offer therapeutic potential against spike protein-induced lung inflammation. Full article
Show Figures

Figure 1

Back to TopTop