Optical–Electric–Magnetic Multifunctional Composite Materials

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Composites Applications".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1212

Special Issue Editor


E-Mail Website
Guest Editor
School of Physics, Xidian University, Xi’an 710071, China
Interests: electromagnetic functional nanocomposites and their stealth applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce a Special Issue dedicated to "Optical–Electric–Magnetic Multifunctional Composite Materials". This Special Issue aims to showcase cutting-edge research and innovations in the design, synthesis, characterization, and application of composite materials that integrate optical, electrical, and magnetic functionalities. Such materials hold transformative potential for next-generation technologies, including optoelectronics, energy storage, sensing, and biomedical devices. Topics of interest include, but are not limited to, the following: 

  • Novel material architectures (e.g., hybrid nanostructures, layered composites).
  • Synergistic coupling mechanisms between optical, electric, and magnetic properties.
  • Advanced fabrication techniques (e.g., self-assembly, 3D printing).
  • Theoretical modeling and computational insights into multifunctional behaviors.
  • Applications in photovoltaics, spintronics, smart sensors, and electromagnetic shielding/absorption.

Dr. Jiaolong Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coupling mechanisms
  • optical, electric, and magnetic properties
  • multifunctional behaviors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 4450 KiB  
Article
Synergistic Promotion of Selective Oxidation of Glycerol to C3 Products by Mo-Doped BiVO4-Coupled FeOOH Co-Catalysts Through Photoelectrocatalysis Process
by Jian Wang, Xinyue Guo, Haomin Gong, Wanggang Zhang, Yiming Liu and Bo Li
J. Compos. Sci. 2025, 9(8), 381; https://doi.org/10.3390/jcs9080381 - 22 Jul 2025
Viewed by 187
Abstract
The Mo:BiVO4/FeOOH photoelectrode was synthesized through the deposition of FeOOH onto the surface of the Mo:BiVO4 photoelectrode. The composite photoelectrode demonstrated a photocurrent of 1.8 mA·cm−2, which is three times greater than that observed for pure BiVO4 [...] Read more.
The Mo:BiVO4/FeOOH photoelectrode was synthesized through the deposition of FeOOH onto the surface of the Mo:BiVO4 photoelectrode. The composite photoelectrode demonstrated a photocurrent of 1.8 mA·cm−2, which is three times greater than that observed for pure BiVO4. Furthermore, the glycerol conversion rate was recorded at 79 μmol·cm−2·h−1, approximately double that of pure BiVO4, while the selectivity for glyceraldehyde reached 49%, also about twice that of pure BiVO4. The incorporation of Mo has been shown to enhance the stability of the BiVO4. Additionally, Mo doping improves the efficiency of electron-hole transport and increases the carrier concentration within the BiVO4. This enhancement leads to a greater number of holes participating in the formation of iron oxyhydroxide (FeOOH), thereby stabilizing the FeOOH co-catalyst within the glycerol conversion system. The FeOOH co-catalyst facilitates the adsorption and oxidation of the primary hydroxyl group of glycerol, resulting in the cleavage of the C−H bond to generate a carbon radical (C). The interaction between the carbon radical and the hydroxyl group produces an intermediate, which subsequently dehydrates to form glyceraldehyde (GLAD). Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Figure 1

8 pages, 720 KiB  
Article
Microscopic Characterization of Pb10−xCux(PO4)6O by 31P and 63/65Cu NMR Measurements
by Qing-Ping Ding, Yue Sun, Qiang Hou, Wei Wei, Xin Zhou, Xinyue Wang, Zhixiang Shi and Yuji Furukawa
J. Compos. Sci. 2025, 9(7), 377; https://doi.org/10.3390/jcs9070377 - 18 Jul 2025
Viewed by 574
Abstract
The report of the first room-temperature, ambient-pressure superconductivity in copper-doped lead apatite Pb10−xCux(PO4)6O has attracted lots of attention. However, subsequent studies revealed the presence of numerous impurity phases in the polycrystalline sample, and the [...] Read more.
The report of the first room-temperature, ambient-pressure superconductivity in copper-doped lead apatite Pb10−xCux(PO4)6O has attracted lots of attention. However, subsequent studies revealed the presence of numerous impurity phases in the polycrystalline sample, and the sharp superconducting-like transition is not due to a superconducting transition but most likely due to a reduction in resistivity caused by the first-order structural phase transition of Cu2S at around 385 K from the β phase at high temperature to the γ phase at low temperature. Before now, only bulk measurements have been performed on a Pb10−xCux(PO4)6O powder sample, which could be affected by the impurity phases, masking the intrinsic properties of Pb10−xCux(PO4)6O. In this study, 31P and 63/65Cu nuclear magnetic resonance (NMR) measurements have been performed on a Pb10−xCux(PO4)6O powder sample to investigate its physical properties from a microscopic point of view. Our NMR data evidence the non-magnetic insulating nature of Pb10−xCux(PO4)6O without any trace of electron correlation effects. Furthermore, the 63/65Cu NMR results suggest that no copper or very little copper is substituted for Pb in Pb10(PO4)6O prepared by sintering Pb2SO5 and Cu3P. Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Figure 1

10 pages, 2813 KiB  
Article
The Effect of Doping with Aluminum on the Optical, Structural, and Morphological Properties of Thin Films of SnO2 Semiconductors
by Isis Chetzyl Ballardo Rodriguez, U. Garduño Terán, A. I. Díaz Cano, B. El Filali and M. Badaoui
J. Compos. Sci. 2025, 9(7), 358; https://doi.org/10.3390/jcs9070358 - 9 Jul 2025
Viewed by 268
Abstract
There is considerable interest in broadband nanomaterials, particularly transparent semiconductor oxides, within both fundamental research and technological applications. Historically, it has been considered that the variation in dopant concentration during the synthesis of semiconductor materials is a crucial factor in activating and/or modulating [...] Read more.
There is considerable interest in broadband nanomaterials, particularly transparent semiconductor oxides, within both fundamental research and technological applications. Historically, it has been considered that the variation in dopant concentration during the synthesis of semiconductor materials is a crucial factor in activating and/or modulating the optical and structural properties, particularly the bandgap and the parameters of the unit cell, of semiconductor oxides. Recently, tin oxide has emerged as a key material due to its excellent structural properties, optical transparency, and various promising applications in optoelectronics. This study utilized the ultrasonic spray pyrolysis technique to synthesize aluminum-doped tin oxide (ATO) thin films on quartz and polished single-crystal silicon substrates. The impact of varying aluminum doping levels (0, 2, 5, and 10 at. %) on morphology and structural and optical properties was examined. The ATO thin films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmittance spectroscopy. SEM images demonstrated a slight reduction in the size of ATO nanoparticles as the aluminum doping concentration increased. XRD analysis revealed a tetragonal crystalline structure with the space group P42/mnm, and a shift in the XRD peaks to higher angles was noted with increasing aluminum content, indicating a decrease in the crystalline lattice parameters of ATO. The transmittance of the ATO films varied between 75% and 85%. By employing the transmittance spectra and the established Tauc formula the optical bandgap values of ATO films were calculated, showing an increase in the bandgap with higher doping levels. These findings were thoroughly analyzed and discussed; additionally, an effort was made to clarify the contradictory analyses present in the literature and to identify a doping range that avoids the onset of a secondary phase. Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Figure 1

Back to TopTop