Electromechanical Impedance-Based Compressive Load-Induced Damage Identification of Fiber-Reinforced Concrete
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Properties
2.2. Specimens Casting
2.3. Testing Procedure
2.4. Damage Identification Process
3. Results
3.1. Specimen 1
3.1.1. Compression Behavior of Specimen 1
3.1.2. PZTs EMI Responses of Specimen 1
3.1.3. Damage Identification of Specimen 1
3.2. Specimen 2
3.2.1. Compression Behavior of Specimen 2
3.2.2. PZTs EMI Responses of Specimen 2
3.2.3. Damage Identification of Specimen 2
3.3. Specimen 3
3.3.1. Compression Behavior of Specimen 3
3.3.2. PZTs EMI Responses of Specimen 3
3.3.3. Damage Identification of Specimen 3
4. Discussion
5. Conclusions
- The EMI-based SHM method and the applied instrumental equipment identify the accumulation of load-induced damage of FRC.
- The HCA can feasibly be used to identify damage in FRC.
- A PZT network could provide critical insights pertaining to the location and propagation of load-induced fractures in FRC.
- The HCA proficiently evaluates the accumulation of damage attributable to the pseudo-ductility exhibited by FRC in the majority of PZT transducers examined in this study.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodward, R.J. Collapse of a Segmental Post-Tensioned Concrete Bridge. Transp. Res. Rec. 1989, 1211, 38–59. [Google Scholar]
- Kaur, N.; Goyal, S.; Anand, K.; Sahu, G.K. A Cost-Effective Approach for Assessment of Pre-Stressing Force in Bridges Using Piezoelectric Transducers. Measurement 2021, 168, 108324. [Google Scholar] [CrossRef]
- Chalioris, C.E. Analytical Approach for the Evaluation of Minimum Fibre Factor Required for Steel Fibrous Concrete Beams under Combined Shear and Flexure. Constr. Build. Mater. 2013, 43, 317–336. [Google Scholar] [CrossRef]
- Naoum, M.C.; Papadopoulos, N.A.; Sapidis, G.M.; Voutetaki, M.E. Efficacy of PZT Sensors Network Different Configurations in Damage Detection of Fiber-Reinforced Concrete Prisms under Repeated Loading. Sensors 2024, 24, 5660. [Google Scholar] [CrossRef]
- Huang, Y.; Grünewald, S.; Schlangen, E.; Luković, M. Strengthening of Concrete Structures with Ultra High Performance Fiber Reinforced Concrete (UHPFRC): A Critical Review. Constr. Build. Mater. 2022, 336, 127398. [Google Scholar] [CrossRef]
- Chalioris, C.E. Steel Fibrous RC Beams Subjected to Cyclic Deformations under Predominant Shear. Eng. Struct. 2013, 49, 104–118. [Google Scholar] [CrossRef]
- Tastani, S.; Ntampanli, E.; Savvidis, I.; Veneti, M.; Zapris, V. Strain Resilient Cementitious Composites of Unclassified Calcareous Fly Ash and PP Fibers: Performance by Also Considering Durability Effects. In Strain-Hardening Cement-Based Composites; Mechtcherine, V., Slowik, V., Kabele, P., Eds.; RILEM Bookseries; Springer: Dordrecht, The Netherlands, 2018; Volume 15, pp. 634–642. ISBN 978-94-024-1193-5. [Google Scholar]
- Tsonos, A.D.G.; Kalogeropoulos, G.I.; Iakovidis, P.E.; Konstantinidis, D. Seismic Retrofitting of Pre-1970 RC Bridge Columns Using Innovative Jackets. Int. J. Struct. Eng. 2017, 8, 133. [Google Scholar] [CrossRef]
- Mpalaskas, A.C.; Matikas, T.E.; Aggelis, D.G. Acoustic Emission of Fire Damaged Fiber Reinforced Concrete; Meyendorf, N.G., Matikas, T.E., Peters, K.J., Eds.; SPIE: Las Vegas, NV, USA, 2016; p. 980618. [Google Scholar]
- Abbas, A.M.; Hussain, H.K.; Ojaimi, M.F. Shear and Flexural Behavior of Flat Slabs Casted with Polyolefin Fiber-Reinforced Concrete. Fibers 2022, 10, 34. [Google Scholar] [CrossRef]
- Haq, M.; Bhalla, S.; Naqvi, T. Piezo-Impedance Based Fatigue Damage Monitoring of Restrengthened Concrete Frames. Compos. Struct. 2022, 280, 114868. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Papadopoulos, N.A.; Sapidis, G.; Naoum, M.C.; Golias, E. EMA-Based Monitoring Method of Strengthened Beam-Column Joints; University of Nebraska at Omaha: Omaha, NE, USA, 2023; Volume 2023, pp. 853–873. [Google Scholar]
- Bhalla, S.; Yang, Y.W.; Xu, J.F.; Soh, C.K. Damage Quantification Using EMI Technique. In Smart Materials in Structural Health Monitoring, Control and Biomechanics; Advanced Topics in Science and Technology in China; Springer: Berlin/Heidelberg, Germany, 2012; pp. 129–186. ISBN 978-3-642-24462-9. [Google Scholar]
- Ai, D.; Yang, Z.; Li, H.; Zhu, H. Heating-Time Effect on Electromechanical Admittance of Surface-Bonded PZT Sensor for Concrete Structural Monitoring. Measurement 2021, 184, 109992. [Google Scholar] [CrossRef]
- Providakis, C.P.; Stefanaki, K.D.; Voutetaki, M.E.; Tsompanakis, J.; Stavroulaki, M. Developing a Multi-Mode PZT Sensing Solution for Active SHM in Concrete Structures; IEEE: Piscataway, NJ, USA, 2013; pp. 61–65. [Google Scholar]
- Mpalaskas, A.C.; Thanasia, O.V.; Matikas, T.E.; Aggelis, D.G. Mechanical and Fracture Behavior of Cement-Based Materials Characterized by Combined Elastic Wave Approaches. Constr. Build. Mater. 2014, 50, 649–656. [Google Scholar] [CrossRef]
- Jiang, T.; Yu, D.; Xiao, M.; Li, L.; Wang, L. Monitoring Bond-Slip Behavior of CFRP-RCESC Beams Using Piezoelectric Active Sensing Method. Adv. Bridge Eng. 2021, 2, 25. [Google Scholar] [CrossRef]
- Mpalaskas, A.C.; Matikas, T.E.; Aggelis, D.G.; Alver, N. Acoustic Emission for Evaluating the Reinforcement Effectiveness in Steel Fiber Reinforced Concrete. Appl. Sci. 2021, 11, 3850. [Google Scholar] [CrossRef]
- Aggelis, D.G.; Mpalaskas, A.C.; Matikas, T.E. Acoustic Monitoring for the Evaluation of Concrete Structures and Materials. In Acoustic Emission (AE) and Related Non-destructive Evaluation (NDE) Techniques in the Fracture Mechanics of Concrete: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 269–286. [Google Scholar]
- Altammar, H.; Dhingra, A.; Salowitz, N. Ultrasonic Sensing and Actuation in Laminate Structures Using Bondline-Embedded D35 Piezoelectric Sensors. Sensors 2018, 18, 3885. [Google Scholar] [CrossRef]
- Erdogmus, E.; Garcia, E.; Amiri, A.S.; Schuller, M. A Novel Structural Health Monitoring Method for Reinforced Concrete Bridge Decks Using Ultrasonic Guided Waves. Infrastructures 2020, 5, 49. [Google Scholar] [CrossRef]
- Liang, C.; Sun, F.; Rogers, C.A. Electro-Mechanical Impedance Modeling of Active Material Systems. Smart Mater. Struct. 1996, 5, 171–186. [Google Scholar] [CrossRef]
- Perera, R.; Torres, L.; Díaz, F.J.; Barris, C.; Baena, M. Analysis of the Impact of Sustained Load and Temperature on the Performance of the Electromechanical Impedance Technique through Multilevel Machine Learning and FBG Sensors. Sensors 2021, 21, 5755. [Google Scholar] [CrossRef]
- Cao, P.; Zhang, S.; Wang, Z.; Zhou, K. Damage Identification Using Piezoelectric Electromechanical Impedance: A Brief Review from a Numerical Framework Perspective. Structures 2023, 50, 1906–1921. [Google Scholar] [CrossRef]
- Kocherla, A.; Duddi, M.; Subramaniam, K.V.L. Embedded PZT Sensors for Monitoring Formation and Crack Opening in Concrete Structures. Measurement 2021, 182, 109698. [Google Scholar] [CrossRef]
- Bhalla, S.; Soh, C.K. Electromechanical Impedance Modeling for Adhesively Bonded Piezo-Transducers. J. Intell. Mater. Syst. Struct. 2004, 15, 955–972. [Google Scholar] [CrossRef]
- Naoum, M.; Sapidis, G.; Papadopoulos, N.; Golias, E.; Chalioris, C. Structural Health Monitoring of Reinforced Concrete Beam-Column Joints Using Piezoelectric Transducers. In International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures; Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D., Eds.; RILEM Bookseries; Springer: Cham, Switzerland, 2023; Volume 43, pp. 945–956. ISBN 978-3-031-33210-4. [Google Scholar]
- Papadopoulos, N.A.; Naoum, M.C.; Sapidis, G.M.; Chalioris, C.E. Cracking and Fiber Debonding Identification of Concrete Deep Beams Reinforced with C-FRP Ropes against Shear Using a Real-Time Monitoring System. Polymers 2023, 15, 473. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhu, H. Flexure-Critical Stress and Damage Identification in RC Beam Structure Using Embedded Piezoelectric Transducers: 2D Modelling and Experimental Investigations. Constr. Build. Mater. 2023, 409, 134017. [Google Scholar] [CrossRef]
- Bhalla, S.; Kaur, N. Prognosis of Low-Strain Fatigue Induced Damage in Reinforced Concrete Structures Using Embedded Piezo-Transducers. Int. J. Fatigue 2018, 113, 98–112. [Google Scholar] [CrossRef]
- Ai, D.; Luo, H.; Wang, C.; Zhu, H. Monitoring of the Load-Induced RC Beam Structural Tension/Compression Stress and Damage Using Piezoelectric Transducers. Eng. Struct. 2018, 154, 38–51. [Google Scholar] [CrossRef]
- Pham, Q.-Q.; Dang, N.-L.; Kim, J.-T. Smart PZT-Embedded Sensors for Impedance Monitoring in Prestressed Concrete Anchorage. Sensors 2021, 21, 7918. [Google Scholar] [CrossRef]
- Dang, N.; Pham, Q.; Kim, J. Piezoelectric-based Hoop-type Interface for Impedance Monitoring of Local Strand Breakage in Prestressed Multi-strand Anchorage. Struct. Control. Heal. Monit. 2021, 28, e2649. [Google Scholar] [CrossRef]
- Yan, S.; Sun, W.; Song, G.; Gu, H.; Huo, L.-S.; Liu, B.; Zhang, Y.-G. Health Monitoring of Reinforced Concrete Shear Walls Using Smart Aggregates. Smart Mater. Struct. 2009, 18, 047001. [Google Scholar] [CrossRef]
- Papadopoulos, N.A.; Naoum, M.C.; Sapidis, G.M.; Chalioris, C.E. Resilient and Sustainable Structures through EMI-Based SHM Evaluation of an Innovative C-FRP Rope Strengthening Technique. Appl. Mech. 2024, 5, 405–419. [Google Scholar] [CrossRef]
- Divsholi, B.S.; Yang, Y.W.; Bing, L. Monitoring Beam-Column Joint in Concrete Structures Using Piezo-Impedance Sensors. Adv. Mater. Res. 2009, 79–82, 59–62. [Google Scholar] [CrossRef]
- Sapidis, G.M.; Naoum, M.C.; Papadopoulos, N.A.; Golias, E.; Karayannis, C.G.; Chalioris, C.E. A Novel Approach to Monitoring the Performance of Carbon-Fiber-Reinforced Polymer Retrofitting in Reinforced Concrete Beam–Column Joints. Appl. Sci. 2024, 14, 9173. [Google Scholar] [CrossRef]
- Kocherla, A.; Subramaniam, K.V.L. Stress and Damage Localization Monitoring in Fiber-Reinforced Concrete Using Surface-Mounted PZT Sensors. Meas. Sci. Technol. 2020, 31, 024004. [Google Scholar] [CrossRef]
- Sapidis, G.M.; Kansizoglou, I.; Naoum, M.C.; Papadopoulos, N.A.; Chalioris, C.E. A Deep Learning Approach for Autonomous Compression Damage Identification in Fiber-Reinforced Concrete Using Piezoelectric Lead Zirconate Titanate Transducers. Sensors 2024, 24, 386. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, D.; Zheng, L.; Huo, L.; Song, G. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete. Sensors 2018, 18, 1782. [Google Scholar] [CrossRef]
- Ai, D.; Mo, F.; Han, Y.; Wen, J. Automated Identification of Compressive Stress and Damage in Concrete Specimen Using Convolutional Neural Network Learned Electromechanical Admittance. Eng. Struct. 2022, 259, 114176. [Google Scholar] [CrossRef]
- Kocherla, A.; Subramaniam, K.V.L. Embedded Smart PZT-Based Sensor for Internal Damage Detection in Concrete under Applied Compression. Measurement 2020, 163, 108018. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, Q.; Panda, G.P.; Wu, W.; Song, G.; Vipulanandan, C. Real-Time Monitoring Stiffness Degradation of Hardened Cement Paste under Uniaxial Compression Loading through Piezoceramic-Based Electromechanical Impedance Method. Constr. Build. Mater. 2020, 256, 119395. [Google Scholar] [CrossRef]
- Narayanan, A.; Subramaniam, K.V.L. Sensing of Damage and Substrate Stress in Concrete Using Electro-Mechanical Impedance Measurements of Bonded PZT Patches. Smart Mater. Struct. 2016, 25, 095011. [Google Scholar] [CrossRef]
- Naoum, M.C.; Sapidis, G.M.; Papadopoulos, N.A.; Voutetaki, M.E. An Electromechanical Impedance-Based Application of Realtime Monitoring for the Load-Induced Flexural Stress and Damage in Fiber-Reinforced Concrete. Fibers 2023, 11, 34. [Google Scholar] [CrossRef]
- Ai, D.; Mo, F.; Yang, F.; Zhu, H. Electromechanical Impedance-Based Concrete Structural Damage Detection Using Principal Component Analysis Incorporated with Neural Network. J. Intell. Mater. Syst. Struct. 2022, 33, 2241–2256. [Google Scholar] [CrossRef]
- Perera, R.; Torres, L.; Ruiz, A.; Barris, C.; Baena, M. An EMI-Based Clustering for Structural Health Monitoring of NSM FRP Strengthening Systems. Sensors 2019, 19, 3775. [Google Scholar] [CrossRef] [PubMed]
- Sevillano, E.; Sun, R.; Gil, A.; Perera, R. Interfacial Crack-Induced Debonding Identification in FRP-Strengthened RC Beams from PZT Signatures Using Hierarchical Clustering Analysis. Compos. Part B Eng. 2016, 87, 322–335. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.-J.; Yun, C.-B.; Inman, D.J. Electro-Mechanical Impedance-Based Wireless Structural Health Monitoring Using PCA-Data Compression and k-Means Clustering Algorithms. J. Intell. Mater. Syst. Struct. 2008, 19, 509–520. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, X.; Zhang, Y. Piezoelectric Active Sensor Self-Diagnosis for Electromechanical Impedance Monitoring Using K-Means Clustering Analysis and Artificial Neural Network. Shock. Vib. 2021, 2021, 5574898. [Google Scholar] [CrossRef]
- Ai, D.; Zhang, R. Deep Learning of Electromechanical Admittance Data Augmented by Generative Adversarial Networks for Flexural Performance Evaluation of RC Beam Structure. Eng. Struct. 2023, 296, 116891. [Google Scholar] [CrossRef]
- de Oliveira, M.; Monteiro, A.; Vieira Filho, J. A New Structural Health Monitoring Strategy Based on PZT Sensors and Convolutional Neural Network. Sensors 2018, 18, 2955. [Google Scholar] [CrossRef]
- EN 934-2:2009+A1:2012; Admixtures for Concrete, Mortar and Grout—Part 2: Concrete Admixtures—Definitions, Requirements, Conformity, Marking and Labelling . CEN: Brussels, Belgium; European Committee for Standardization: Brussels, Belgium, 2012.
- ASTM C192; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: Montgomery, PA, USA, 2024. [CrossRef]
- ASTM C39; Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: Montgomery, PA, USA, 2023. [CrossRef]
- Voutetaki, M.E.; Naoum, M.C.; Papadopoulos, N.A.; Sapidis, G.; Chalioris, C.E. Cracking Diagnosis in Fibre Reinforced Concrete Cubes and Cylinders with Synthetic Fibres Using a PZT-Based Health Monitoring System. Sch. J. Eng. Tech. 2021, 9, 140–151. [Google Scholar] [CrossRef]
- Jin, H.; Xu, H.; Cai, C.; Chen, L.; Wang, T.; Shen, L.; Wang, Z.; Chen, T.; Ngo, T. Experimental Investigation and Model Analysis of Uniaxial Compressive Behavior, Micro Properties and Sustainability of Fiber-Reinforced Concrete Designed by Cost-Efficiency Fibers. Innov. Infrastruct. Solut. 2025, 10, 19. [Google Scholar] [CrossRef]
- Perera, R.; Huerta, M.C.; Baena, M.; Barris, C. Analysis of FRP-Strengthened Reinforced Concrete Beams Using Electromechanical Impedance Technique and Digital Image Correlation System. Sensors 2023, 23, 8933. [Google Scholar] [CrossRef]
- Providakis, C.; Tsistrakis, S.; Voutetaki, M.; Tsompanakis, J.; Stavroulaki, M.; Agadakos, J.; Kampianakis, E.; Pentes, G.; Liarakos, E. An Innovative Active Sensing Platform for Wireless Damage Monitoring of Concrete Structures. Curr. Smart Mater. 2016, 1, 49–62. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapidis, G.M.; Naoum, M.C.; Papadopoulos, N.A. Electromechanical Impedance-Based Compressive Load-Induced Damage Identification of Fiber-Reinforced Concrete. Infrastructures 2025, 10, 60. https://doi.org/10.3390/infrastructures10030060
Sapidis GM, Naoum MC, Papadopoulos NA. Electromechanical Impedance-Based Compressive Load-Induced Damage Identification of Fiber-Reinforced Concrete. Infrastructures. 2025; 10(3):60. https://doi.org/10.3390/infrastructures10030060
Chicago/Turabian StyleSapidis, George M., Maria C. Naoum, and Nikos A. Papadopoulos. 2025. "Electromechanical Impedance-Based Compressive Load-Induced Damage Identification of Fiber-Reinforced Concrete" Infrastructures 10, no. 3: 60. https://doi.org/10.3390/infrastructures10030060
APA StyleSapidis, G. M., Naoum, M. C., & Papadopoulos, N. A. (2025). Electromechanical Impedance-Based Compressive Load-Induced Damage Identification of Fiber-Reinforced Concrete. Infrastructures, 10(3), 60. https://doi.org/10.3390/infrastructures10030060