ijms-logo

Journal Browser

Journal Browser

Special Issue "Latest Review Papers in Neurobiology 2023"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Neurobiology".

Deadline for manuscript submissions: 31 March 2023 | Viewed by 5066

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue aims to collect high-quality review papers in all the fields of neurobiology. We encourage researchers from related fields to contribute review papers which explore the latest developments in neurobiology, or to invite relevant experts and colleagues to do so. Full-length comprehensive reviews are favoured.

Dr. Anna Atlante
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neurobiology
  • neurochemistry
  • neurology
  • neuropathology
  • neurophysiology
  • neuropharmacology
  • neurogenetics
  • neuro-oncology
  • aging neuroscience
  • neurotrauma
  • neurogenesis
  • neurotransmitter
  • neuroinflammation
  • neuroendocrine tumor
  • neurodegenerative diseases

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

Review
Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19
Int. J. Mol. Sci. 2023, 24(6), 5618; https://doi.org/10.3390/ijms24065618 - 15 Mar 2023
Viewed by 446
Abstract
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) [...] Read more.
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism. Full article
(This article belongs to the Special Issue Latest Review Papers in Neurobiology 2023)
Show Figures

Figure 1

Review
Status of Metabolomic Measurement for Insights in Alzheimer’s Disease Progression—What Is Missing?
Int. J. Mol. Sci. 2023, 24(5), 4960; https://doi.org/10.3390/ijms24054960 - 04 Mar 2023
Viewed by 503
Abstract
Alzheimer’s disease (AD) is an aging-related neurodegenerative disease, leading to the progressive loss of memory and other cognitive functions. As there is still no cure for AD, the growth in the number of susceptible individuals represents a major emerging threat to public health. [...] Read more.
Alzheimer’s disease (AD) is an aging-related neurodegenerative disease, leading to the progressive loss of memory and other cognitive functions. As there is still no cure for AD, the growth in the number of susceptible individuals represents a major emerging threat to public health. Currently, the pathogenesis and etiology of AD remain poorly understood, while no efficient treatments are available to slow down the degenerative effects of AD. Metabolomics allows the study of biochemical alterations in pathological processes which may be involved in AD progression and to discover new therapeutic targets. In this review, we summarized and analyzed the results from studies on metabolomics analysis performed in biological samples of AD subjects and AD animal models. Then this information was analyzed by using MetaboAnalyst to find the disturbed pathways among different sample types in human and animal models at different disease stages. We discuss the underlying biochemical mechanisms involved, and the extent to which they could impact the specific hallmarks of AD. Then we identify gaps and challenges and provide recommendations for future metabolomics approaches to better understand AD pathogenesis. Full article
(This article belongs to the Special Issue Latest Review Papers in Neurobiology 2023)
Show Figures

Figure 1

Review
Recent Insights into the Functional Role of AMPA Receptors in the Oligodendrocyte Lineage Cells In Vivo
Int. J. Mol. Sci. 2023, 24(4), 4138; https://doi.org/10.3390/ijms24044138 - 18 Feb 2023
Viewed by 563
Abstract
This review discusses the experimental findings of several recent studies which investigated the functional role of AMPA receptors (AMPARs) in oligodendrocyte lineage cells in vivo, in mice and in zebrafish. These studies provided valuable information showing that oligodendroglial AMPARs may be involved in [...] Read more.
This review discusses the experimental findings of several recent studies which investigated the functional role of AMPA receptors (AMPARs) in oligodendrocyte lineage cells in vivo, in mice and in zebrafish. These studies provided valuable information showing that oligodendroglial AMPARs may be involved in the modulation of proliferation, differentiation, and migration of oligodendroglial progenitors, as well as survival of myelinating oligodendrocytes during physiological conditions in vivo. They also suggested that targeting the subunit composition of AMPARs may be an important strategy for treating diseases. However, at the same time, the experimental findings taken together still do not provide a clear picture on the topic. Hence, new ideas and new experimental designs are required for understanding the functional role of AMPARs in the oligodendrocyte lineage cells in vivo. It is also necessary to consider more closely the temporal and spatial aspects of AMPAR-mediated signalling in the oligodendrocyte lineage cells. These two important aspects are routinely discussed by neuronal physiologists studying glutamatergic synaptic transmission, but are rarely debated and thought about by researchers studying glial cells. Full article
(This article belongs to the Special Issue Latest Review Papers in Neurobiology 2023)
Show Figures

Figure 1

Review
P188 Therapy in In Vitro Models of Traumatic Brain Injury
Int. J. Mol. Sci. 2023, 24(4), 3334; https://doi.org/10.3390/ijms24043334 - 07 Feb 2023
Viewed by 467
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Varied mechanisms of injury contribute to the heterogeneity of this patient population as demonstrated by the multiple published grading scales and diverse required criteria leading to diagnoses from mild to [...] Read more.
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Varied mechanisms of injury contribute to the heterogeneity of this patient population as demonstrated by the multiple published grading scales and diverse required criteria leading to diagnoses from mild to severe. TBI pathophysiology is classically separated into a primary injury that is characterized by local tissue destruction as a result of the initial blow, followed by a secondary phase of injury constituted by a score of incompletely understood cellular processes including reperfusion injury, disruption to the blood-brain barrier, excitotoxicity, and metabolic dysregulation. There are currently no effective pharmacological treatments in the wide-spread use for TBI, in large part due to challenges associated with the development of clinically representative in vitro and in vivo models. Poloxamer 188 (P188), a Food and Drug Administration-approved amphiphilic triblock copolymer embeds itself into the plasma membrane of damaged cells. P188 has been shown to have neuroprotective properties on various cell types. The objective of this review is to provide a summary of the current literature on in vitro models of TBI treated with P188. Full article
(This article belongs to the Special Issue Latest Review Papers in Neurobiology 2023)
Show Figures

Figure 1

Review
Review of Technological Challenges in Personalised Medicine and Early Diagnosis of Neurodegenerative Disorders
Int. J. Mol. Sci. 2023, 24(4), 3321; https://doi.org/10.3390/ijms24043321 - 07 Feb 2023
Viewed by 712
Abstract
Neurodegenerative disorders are characterised by progressive neuron loss in specific brain areas. The most common are Alzheimer’s disease and Parkinson’s disease; in both cases, diagnosis is based on clinical tests with limited capability to discriminate between similar neurodegenerative disorders and detect the early [...] Read more.
Neurodegenerative disorders are characterised by progressive neuron loss in specific brain areas. The most common are Alzheimer’s disease and Parkinson’s disease; in both cases, diagnosis is based on clinical tests with limited capability to discriminate between similar neurodegenerative disorders and detect the early stages of the disease. It is common that by the time a patient is diagnosed with the disease, the level of neurodegeneration is already severe. Thus, it is critical to find new diagnostic methods that allow earlier and more accurate disease detection. This study reviews the methods available for the clinical diagnosis of neurodegenerative diseases and potentially interesting new technologies. Neuroimaging techniques are the most widely used in clinical practice, and new techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have significantly improved the diagnosis quality. Identifying biomarkers in peripheral samples such as blood or cerebrospinal fluid is a major focus of the current research on neurodegenerative diseases. The discovery of good markers could allow preventive screening to identify early or asymptomatic stages of the neurodegenerative process. These methods, in combination with artificial intelligence, could contribute to the generation of predictive models that will help clinicians in the early diagnosis, stratification, and prognostic assessment of patients, leading to improvements in patient treatment and quality of life. Full article
(This article belongs to the Special Issue Latest Review Papers in Neurobiology 2023)
Show Figures

Figure 1

Review
Circulating MicroRNAs and Extracellular Vesicle-Derived MicroRNAs as Predictors of Functional Recovery in Ischemic Stroke Patients: A Systematic Review and Meta-Analysis
Int. J. Mol. Sci. 2023, 24(1), 251; https://doi.org/10.3390/ijms24010251 - 23 Dec 2022
Viewed by 790
Abstract
Stroke accounts for the second leading cause of death and a major cause of disability, with limited therapeutic strategy in both the acute and chronic phases. Blood-based biomarkers are intensively researched and widely recognized as useful tools to predict the prognoses of patients [...] Read more.
Stroke accounts for the second leading cause of death and a major cause of disability, with limited therapeutic strategy in both the acute and chronic phases. Blood-based biomarkers are intensively researched and widely recognized as useful tools to predict the prognoses of patients confronted with therapeutically limited diseases. We performed a systematic review of the circulating biomarkers in IS patients with prognostic value, with a focus on microRNAs and exosomes as predictive biomarkers of motor and cognitive recovery. We identified 63 studies, totalizing 72 circulating biomarkers with prognostic value in stroke recovery, as follows: 68 miRNAs and exosomal-miRNAs being identified as predictive for motor recovery after stroke, and seven biomarkers being predictive for cognitive recovery. Twelve meta-analyses were performed using effect sizes (random-effects and fixed-effects model). The most significant correlation findings obtained after pooling were with miR-21, miR-29b, miR-125b-5p, miR-126, and miR-335. We identified several miRNAs that were correlated with clinical outcomes of stroke severity and recovery after ischemic stroke, providing predictive information on motor and cognitive recovery. Based on the current state of research, we identified serum miR-9 and neutrophil miR-29b as the most promising biomarkers for in-depth follow-up studies, followed by serum miR-124 and plasma miR-125b. Full article
(This article belongs to the Special Issue Latest Review Papers in Neurobiology 2023)
Show Figures

Graphical abstract

Review
Microglia and Brain Macrophages as Drivers of Glioma Progression
Int. J. Mol. Sci. 2022, 23(24), 15612; https://doi.org/10.3390/ijms232415612 - 09 Dec 2022
Viewed by 1163
Abstract
Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially [...] Read more.
Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially in the context of therapeutic considerations. New ideas have emerged regarding the role of microglia and, more recently, blood-derived brain macrophages in glioblastoma (GBM) progression. We are now beginning to understand the mechanisms that allow malignant glioma cells to weaken microglia and brain macrophage defence mechanisms. Surface molecules and cytokines have a prominent role in microglia/macrophage-glioma cell interactions, and we discuss them in detail. The involvement of exosomes and microRNAs forms another focus of this review. In addition, certain microglia and glioma cell pathways deserve special attention. These “synergistic” (we suggest calling them “Janus”) pathways are active in both glioma cells and microglia/macrophages where they act in concert supporting malignant glioma progression. Examples include CCN4 (WISP1)/Integrin α6β1/Akt and CHI3L1/PI3K/Akt/mTOR. They represent attractive therapeutic targets. Full article
(This article belongs to the Special Issue Latest Review Papers in Neurobiology 2023)
Show Figures

Figure 1

Back to TopTop