ijms-logo

Journal Browser

Journal Browser

Glycobiology of Health and Diseases

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: closed (20 March 2025) | Viewed by 5969

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan
Interests: glycosphingolipids; neuronal cell; glioma cell; cancer; glycosylation; gangliosides; inflammation; neurodegeneration
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Since we began to understand the genetic mechanisms underlying the generation, development, and maintenance of our bodies approximately 70 years ago, the Genome Project and the subsequent Proteomics Project have played dominant roles in the explanation of the actions of all genome products and in the understanding of the results of those interactions. Now, it seems that the majority of the processes involved in health and diseases can be explained based on genomics and proteomics.

However, it has been elucidated that many biomolecules exerting living processes undergo modification with glyco-chains. Many proteins, lipids, and even nucleic acids undergo glycosylation in various modes, depending on the biological situation, such as development, differentiation, aging, and degeneration and depending also on the environmental conditions, such as nutrition, practice, labor, temperature, moisture, toxic agents in foods, gas, and water, and also infections of foreign microorganisms. These factors include both physiological and pathological processes, and modification with glyco-chains seems to be either the mere results of the biological response or a reasonable protective reaction.

Whatever the meaning of glycosylation, various glycosylation products modify the modes of interactions, leading to diverse results in the fates of molecules, cells, organs, and tissues. The accumulation of these interactions result in the formation of our bodies, the status of our health/any diseases we experience, and our wellbeing.

Now, we are required to observe changes in glyco-chains in various situations at various sites, in order to understand glycosylation mechanisms and their regulatory systems. In particular, the following subjects are expected to be researched: 1. challenges in elucidating the expression profiles of glyco-chains in various molecules, cells, and tissues in various situations; 2. analyses of the roles of glycans involved in the interaction between cells, organelles, and bio-organisms, such as humans and parasites/bacteria/viruses; and 3. analyses of the interaction mechanisms between glycans and various ligand molecules such as lectins, leading to diverse phenotypes and cell signals. Any studies on these various aspects of glycosylation are welcome and would contribute to the progress in the field of the glycobiology of health and diseases.

Prof. Dr. Koichi Furukawa
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sugar chains
  • carbohydrate-recognizing molecules
  • glycolipids

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2209 KiB  
Article
N-Glycosylation as a Key Requirement for the Positive Interaction of Integrin and uPAR in Glioblastoma
by Gretel Magalí Ferreira, Hector Adrian Cuello, Aylen Camila Nogueira, Jeremias Omar Castillo, Selene Rojo, Cynthia Antonella Gulino, Valeria Inés Segatori and Mariano Rolando Gabri
Int. J. Mol. Sci. 2025, 26(11), 5310; https://doi.org/10.3390/ijms26115310 - 31 May 2025
Viewed by 455
Abstract
Integrin αV (IαV) and the urokinase-type plasminogen activator receptor (uPAR) are key mediators of tumor malignancy in Glioblastoma. This study aims to characterize IαV/uPAR interaction in GBM and investigate the role played by glycans in this scenario. Protein expression and interaction were confirmed [...] Read more.
Integrin αV (IαV) and the urokinase-type plasminogen activator receptor (uPAR) are key mediators of tumor malignancy in Glioblastoma. This study aims to characterize IαV/uPAR interaction in GBM and investigate the role played by glycans in this scenario. Protein expression and interaction were confirmed via confocal microscopy and co-immunoprecipitation. The role of N-glycosylation was evaluated using Swainsonine (SW) and PNGase F. IαV glycoproteomic analysis was performed by mass spectrometry. Sialic acids and glycan structures in IαV/uPAR interaction were tested using neuraminidase A (NeuA) and lectin interference assays, respectively. Protein expression and their interaction were detected in GBM cells, but not in low-grade glioma cells, even in cells transfected to overexpress uPAR. SW, PNGase, and NeuA treatments significantly reduced IαV/uPAR interaction. Also, lectin interference assays indicated that β1-6 branched glycans play a crucial role in this interaction. Analysis of the IαV glycosylation profile revealed the presence of complex and hybrid N-glycans in GBM, while only oligomannose N-glycans were identified in low-grade glioma. N-glycosylation inhibition and sialic acid removal reduced AKT phosphorylation. Our findings demonstrate, for the first time, the interaction between IαV and uPAR in GBM cells, highlighting the essential role of N-glycosylation, particularly β1-6 branched glycans and sialic acids. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

24 pages, 5577 KiB  
Article
Action Mechanisms of Exosomes Derived from GD3/GD2-Positive Glioma Cells in the Regulation of Phenotypes and Intracellular Signaling: Roles of Integrins
by Mohammad Abul Hasnat, Yuhsuke Ohmi, Farhana Yesmin, Kei Kaneko, Mariko Kambe, Yoko Kitaura, Takako Ito, Yuka Imao, Keiko Kano, Emi Mishiro-Sato, Hiroka Koyanagi, Yoshiyuki Kawamoto, Robiul Hasan Bhuiyan, Yuki Ohkawa, Orie Tajima, Koichi Furukawa and Keiko Furukawa
Int. J. Mol. Sci. 2024, 25(23), 12752; https://doi.org/10.3390/ijms252312752 - 27 Nov 2024
Viewed by 1633
Abstract
Extracellular vesicles (EVs) play important roles in intercellular communication in various biological events. In particular, EVs released from cancer cells have attracted special attention. Although it has been reported that cancer-associated glycosphingolipids play important roles in the enhancement of malignant properties of cancer [...] Read more.
Extracellular vesicles (EVs) play important roles in intercellular communication in various biological events. In particular, EVs released from cancer cells have attracted special attention. Although it has been reported that cancer-associated glycosphingolipids play important roles in the enhancement of malignant properties of cancer cells, the presence, behavior, and roles of glycosphingolipids in EVs have not been elucidated. Recently, we reported crucial roles of EVs expressing gangliosides, GD2, and/or GD3 in the enhancement of cancer properties in malignant melanomas and gliomas. However, how EVs containing cancer-associated glycosphingolipids play their roles has not been reported to date. Here, we studied spatio-temporal mechanisms for GD3/GD2-containing EVs released from gliomas in the actions toward target cells. Proteome analyses of EVs with/without GD3/GD2 revealed an equally high concentration of integrin isoforms in both GD3/GD2+ and GD3/GD2- EVs. PKH26-labeled EVs attached, invaded, and distributed to/in the target cells within 1 h. GD3/GD2 formed molecular complexes with integrins on EVs as elucidated by immunoprecipitation/immunoblotting and immunocytostaining. The addition of antibodies reactive with GD3, GD2, or integrins resulted in the suppression of the enhancing effects of EVs in the cell adhesion assay. The addition of GD3/GD2 + EVs to GD3/GD2- cells clearly increased the phosphorylation levels of the PDGF receptor, FAK, and Erk1/2 in immunoblotting, suggesting GD3/GD2+ EVs activate the signaling pathway in the target cells within 15 min after addition. Anti-ganglioside antibodies clearly blocked signaling with EVs. In conclusion, EVs released from GD3/GD2-expressing glioma cells enhance cancer phenotypes and malignant signals via the cluster formation of integrins and GD3/GD2 on EVs, leading to the regulation of the cancer microenvironment. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 2865 KiB  
Review
Lectin-Based Approaches to Analyze the Role of Glycans and Their Clinical Application in Disease
by Hiroko Ideo, Akiko Tsuchida and Yoshio Takada
Int. J. Mol. Sci. 2024, 25(18), 10231; https://doi.org/10.3390/ijms251810231 - 23 Sep 2024
Cited by 2 | Viewed by 2908
Abstract
Lectin-based approaches remain a valuable tool for analyzing glycosylation, especially when detecting cancer-related changes. Certain glycans function as platforms for cell communication, signal transduction, and adhesion. Therefore, the functions of glycans are important considerations for clinical aspects, such as cancer, infection, and immunity. [...] Read more.
Lectin-based approaches remain a valuable tool for analyzing glycosylation, especially when detecting cancer-related changes. Certain glycans function as platforms for cell communication, signal transduction, and adhesion. Therefore, the functions of glycans are important considerations for clinical aspects, such as cancer, infection, and immunity. Considering that the three-dimensional structure and multivalency of glycans are important factors for their function, their binding characteristics toward lectins provide vital information. Glycans and lectins are inextricably linked, and studies on lectins have also led to research on the roles of glycans. The applications of lectins are not limited to analysis but can also be used as drug delivery tools. Moreover, mammalian lectins are potential therapeutic targets because certain lectins change their expression in cancer, and lectin regulation subsequently regulates several molecules with glycans. Herein, we review lectin-based approaches for analyzing the role of glycans and their clinical applications in diseases, as well as our recent results. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

Back to TopTop