Germplasm Resource Identification and Genetic Improvement of Horticultural Crops—2nd Edition

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Genetics, Genomics, Breeding, and Biotechnology (G2B2)".

Deadline for manuscript submissions: 15 September 2025 | Viewed by 2084

Special Issue Editors


E-Mail Website
Guest Editor
College of Horticulture, Nanjing Agriculutral University, Nanjing 210095, China
Interests: genetics and breeding of vegetable crops; applied genomics; germplasm enhancement and utilization; biotechnology of vegetable crops
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
Interests: vegetable breeding; genetics and genomics; marker‑assisted selection; gene/QTL mapping; distant hybridization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Agriculture is fundamental to society, while seeds are the most important aspect of agriculture. Germplasm resources are the basis of genetic material for plant breeding and crop improvement. Germplasm resources can be better enhanced, and genetic information can be completely understood by germplasm identification. Furthermore, in certain technologies, including heterosis utilization, genotyping, marker-assisted selection, high-throughput phenotyping, molecular design breeding and gene editing, and genomic selection could provide a constant driving force for innovating and expanding germplasm resources. In addition, the development of new methods for upgrading and innovating germplasms, which is vital for accelerating the procedure of breeding innovation and developing modern agriculture, should be encouraged and widely studied by more researchers.

In order to make better use of the germplasms of horticultural crops and promote the development and innovation of breeding technology, Horticulturae is launching a Special Issue on the topic of germplasm identification and genetic improvements of horticultural crops and is beginning to collect necessary high-quality articles.

This Special Issue is entitled, ‘Germplasm Resource Identification and Genetic Improvement of Horticultural Crops—2nd Edition’. The topics of submissions to this Special Issue include, but are not limited to:

  • Accurate identification of the germplasm resources of relevant horticultural crops, deeply understanding the characteristics of different varieties of the same species, and making better use of germplasm resources;
  • Utilization of heterosis methods (utilization of self-incompatibility, utilization of male sterile lines, etc.) to generate new excellent cultivars;
  • Applications of molecular breeding technology, including gene editing, which can improve horticultural crops and improve adaptability;
  • Development of speed breeding and other new technologies for improving germplasms which provide faster and more precise strategies for the breeder.

We sincerely welcome all colleagues in the horticultural industry to contribute manuscripts and share your research progress and general academic views on germplasm resource identification and the genetic improvement of horticultural crops. This Special Issue will accept research papers and reviews related to this subject. We are looking forward to your excellent contributions to Horticulturae.

Prof. Dr. Liwang Liu
Prof. Dr. Yangyong Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • germplasm resources
  • precise identification of germplasm resources
  • heterosis
  • speed breeding
  • gene editing
  • genomic selection
  • marker-assisted selection

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2927 KiB  
Article
Unraveling the Biochemical Diversity in Short-Day Onion Genotypes
by Ashwini Prashant Benke, Vijay Mahajan and Digambar N. Mokat
Horticulturae 2025, 11(5), 484; https://doi.org/10.3390/horticulturae11050484 - 30 Apr 2025
Viewed by 399
Abstract
Crop production is directly associated with the improvement of germplasm, which is mainly reliant on genetic diversity. Diversity among various genotypes has been investigated employing a variety of statistical approaches. The most widely utilized of these methods for determining the genetic overlap of [...] Read more.
Crop production is directly associated with the improvement of germplasm, which is mainly reliant on genetic diversity. Diversity among various genotypes has been investigated employing a variety of statistical approaches. The most widely utilized of these methods for determining the genetic overlap of genotypes is multivariate. In the present investigation, a total of 27 onion genotypes/advanced lines/varieties comprising high and low total soluble solids (TSS) white onion lines along with red varieties were evaluated at the ICAR-Directorate of Onion and Garlic Research station. Data were recorded on seven biochemical parameters. In multivariate analysis, genotypes were clustered into three major groups: the first group comprised thirteen genotypes with high TSS; however, the second group (eight) comprised low TSS white onion genotypes, and in the third group (six), mostly red varieties were clubbed together. The analysis primarily focused on the trait TSS; it was significantly associated with the antioxidant assay 2, 2-diphenyl-1-picrylhydrazyl(DPPH) AE, while total sugar content was positively associated with the antioxidant assay 2, 2-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid)ABTS. In principal component analysis (PCA), the first three principal components (PCs) with >1 Eigen value contributed 71.36% of the variability among genotypes. Characters with a maximum value at PC1 were total soluble solids (0.48), antioxidant capacity AE DPPH (0.46), and total sugar content (0.49). PC2 comprises total phenolic content (0.62) and total flavonoid content (0.62); for PC3, the major contributors were thiosulfinate content (0.82) and antioxidant capacity ABTS (0.32). From the findings of the present study, the best-performing high TSS lines can be used for advancement through strongly correlated traits using breeding strategies. These sorted high TSS lines (W-103, W-107, and W-123) (>22 °Brix.), high-sugar-content genotypes (W-108, W-111, and W-308), and W-361, which recorded high thiosulfinate content, can be advanced or used as parental material for the development of processing-suitable onion varieties. Full article
Show Figures

Figure 1

19 pages, 1644 KiB  
Article
Exploitation of Heterosis for Yield and Quality Enhancement in Pumpkin (Cucurbita moschata Duch. Ex Poir.) Hybrids
by Akshita Bisht, Suresh Kumar Maurya, Lalit Bhatt, Dhirendra Singh, Birendra Prasad, Sudhanshu Verma, Vinay Kumar, Pratapsingh S. Khapte, Nazim S. Gruda and Pradeep Kumar
Horticulturae 2025, 11(5), 473; https://doi.org/10.3390/horticulturae11050473 - 28 Apr 2025
Viewed by 577
Abstract
The hybrid development of pumpkins, utilizing local genetic material, has recently garnered attention in India. This study aimed to evaluate the combining ability, heterosis, and per se performance of pumpkin hybrids for yield-related and biochemical traits. In the present investigation, eight parental lines [...] Read more.
The hybrid development of pumpkins, utilizing local genetic material, has recently garnered attention in India. This study aimed to evaluate the combining ability, heterosis, and per se performance of pumpkin hybrids for yield-related and biochemical traits. In the present investigation, eight parental lines of pumpkins were hybridized using a half-diallel mating design, resulting in 28 F1 hybrids (reciprocals not included). The produced F1 hybrids, parental lines, and a commercial check were assessed in a randomized complete block design with three replications during the summers of 2023 and 2024. The results obtained in the study show that the best performers with the most desirable characteristics were P-7 for total soluble solid, dry matter content, and average fruit weight; P-3 for total carotenoids, number of seeds per fruit, and antioxidant activity; P-2 for yield per plant and flesh thickness; and P-8 for number of fruits per plant. The parent P-5 for fruit number, average fruit weight, and yield per plant; P-2 for flesh thickness and antioxidant activity; P-7 for TSS and dry matter content; P-1 for fruit number; and P-3 for total carotenoids were noted as the best general combiners in terms of the effects of the parental lines on general combining ability. Conversely, the crosses P-2 × P-5 for yield per plant and flesh thickness and P-1 × P-2 for DPPH activity were found to outperform better-parent heterosis and standard heterosis in terms of heterosis and the specific combining ability magnitude of the F1 hybrids. Thus, the findings of this study reveal that these hybrids possess strong potential for commercial cultivation, contributing to the development of high-yielding and nutritionally superior pumpkin hybrids after being tested in various seasons and locations. Full article
Show Figures

Figure 1

21 pages, 8607 KiB  
Article
A Comparison of Efficiency Parameters of SRAP and ISSR Markers in Revealing Variation in Allium Germplasm
by Fatih Hancı and Ebubekir Paşazade
Horticulturae 2025, 11(3), 294; https://doi.org/10.3390/horticulturae11030294 - 8 Mar 2025
Viewed by 802
Abstract
In this study, we present the first-ever comparison of the effectiveness of SRAP and ISSR markers on three Allium species. In addition, to visualize the results of each dataset in a simpler way, the Fruchterman–Reingold algorithm was used to generate a link graph [...] Read more.
In this study, we present the first-ever comparison of the effectiveness of SRAP and ISSR markers on three Allium species. In addition, to visualize the results of each dataset in a simpler way, the Fruchterman–Reingold algorithm was used to generate a link graph and neighbor-joining methods were used to obtain a phylogenetic tree. The genetic similarity matrices were compared using the Mantel test. Primers generated 59 ISSR and 72 SRAP fragments. There was no statistically significant difference between the polymorphism information content of the marker sets. In terms of the effective multiplex ratio, SRAP markers were higher than ISSR markers, with values of 6.700 for garlic, 6.400 for onion, and 5.800 for leek (3.490, 4.316, and 2.573, respectively). Similarly, the marker index was calculated as 2.820, 3.056, and 2.505 for SRAP and 1.903, 1.523, and 1.050 for ISSR in onion, garlic, and leek species, respectively. The highest value regarding cophenetic correlation coefficients was obtained from the Jaccard method. According to the neighbor-joining method, the tree drawn using SRAP and ISSR data together shows a more distinct hierarchical structure of genotypes. The results obtained proved that SRAPs have higher values in terms of sign efficiency criteria, but they are not sufficient for the homogeneous grouping of different Allium species. Full article
Show Figures

Figure 1

Back to TopTop