Reproductive Growth in Perennial Fruit Trees: Importance and Impact of Climate Change

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Genetics, Genomics, Breeding, and Biotechnology (G2B2)".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 926

Special Issue Editors


E-Mail Website
Guest Editor
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Interests: pear; floral bud differentiation; dormancy; fruit quality; anthocyanin; climate change
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Horticultural Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
Interests: peach; self-incompatibility; cold tolerance; genetic resources; breeding

Special Issue Information

Dear Colleagues,

Reproductive growth refers to the process by which plants produce offspring, encompassing a series of stages including floral transition, flowering, fertilization, fruit development, and seed formation. This process is critical for the development of reproductive organs in fruit trees.

Recent global climate change has led to abnormal weather patterns, such as higher summer temperatures and milder winters, which significantly affect the reproductive growth processes of deciduous fruit trees. These changes can have a direct impact on both the yield and quality of fruit tree products. Therefore, understanding the theories behind and regulatory mechanisms of reproductive growth in deciduous fruit trees is essential for addressing climate change and ensuring the sustainable development of the fruit tree industry.

This Special Issue welcomes contributions from researchers working in the field of reproductive growth in perennial fruit trees. Topics of interest include, but are not limited to, the following:

  • Phase transition;
  • Yearly floral bud differentiation;
  • Dormancy;
  • Flowering and pollination;
  • Self-incompatibility;
  • Fruit development;
  • Fruit quality formation.

We welcome research findings, reviews, and discussions that provide new insights into these topics, with the aim of contributing to the sustainable management and productivity of fruit tree systems in the face of ongoing climate challenges.

Dr. Songling Bai
Prof. Dr. Junkai Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • reproductive growth
  • deciduous fruit trees
  • global climate change
  • fruit yield
  • fruit quality
  • dormancy
  • pollination

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4432 KB  
Article
Comparative Analysis of Chloroplast Genomes Reveals Phylogenetic Relationships and Variation in Chlorophyll Fluorescence In Vitis
by Yuanxu Teng, Lipeng Zhang, Yue Song, Yuanyuan Xu, Zhen Zhang, Dongying Fan, Junpeng Li, Xinrui Liu, Junjie Lu, Lujia Wang, Chenlu Du, Yuhuan Miao, Juan He, Huaifeng Liu and Chao Ma
Horticulturae 2025, 11(11), 1330; https://doi.org/10.3390/horticulturae11111330 - 4 Nov 2025
Viewed by 133
Abstract
Grapes (Vitis spp.) are a globally significant fruit crop with a long history of cultivation and substantial cultivar diversity. Their high genetic differentiation and complex evolutionary history make them a valuable system for studying plant evolution. The chloroplast genome, known for its [...] Read more.
Grapes (Vitis spp.) are a globally significant fruit crop with a long history of cultivation and substantial cultivar diversity. Their high genetic differentiation and complex evolutionary history make them a valuable system for studying plant evolution. The chloroplast genome, known for its structural conservation and uniparental inheritance, offers a reliable molecular marker for phylogenetic reconstruction. In this study, we sequenced and assembled the complete chloroplast genomes of nine representative grape cultivars, analyzed their phylogenetic relationships, and compared structural variations. All chloroplast genomes displayed a typical quadripartite structure, with high conservation in genomic architecture, gene order and content, codon usage, and simple sequence repeats (SSRs). However, additional sequence comparisons revealed seven regions with high variation, including the genes rbcL and ndhF, and the intergenic regions rps16-trnQ, ndhC-trnV, accD-psaI, ndhF-rpl32, and trnL-ccsA. At the same time, seven natural variation sites were identified in the amino acid sequences of rbcL and ndhF. Additionally, the study’s maximum likelihood (ML) phylogenetic trees and photosynthetic index measurements suggest that developmental characteristics of grape photosynthesis may be related to the evolutionary origins of different populations. This phylogenetic classification not only elucidates the evolutionary origins of these germplasm resources but also provides a foundation for molecular-assisted breeding by identifying distinct genetic groups. Full article
Show Figures

Figure 1

16 pages, 4312 KB  
Article
Transcriptome Analysis Reveals That PpSLFL3 Is Associated with Cross-Incompatibility in the Peach Landrace ‘Liuyefeitao’
by Haijing Wang, Chunsheng Liu, Yating Liu, Yudie Zhang, Meilan Wu, Haiping Li, Man Zhang, Kun Xiao, Kai Su, Chenguang Zhang, Gang Li, Xiaoying Li, Libin Zhang and Junkai Wu
Horticulturae 2025, 11(8), 969; https://doi.org/10.3390/horticulturae11080969 - 16 Aug 2025
Viewed by 589
Abstract
The peach landrace ‘Liuyefeitao’ exhibits the unique reproductive trait of self-compatibility combined with cross-incompatibility, contrasting with typical Prunus species in this way. In preliminary studies involving controlled pollination assays, we showed complete pollen tube arrest in cross-pollinated styles, whereas self-pollination enabled full tube [...] Read more.
The peach landrace ‘Liuyefeitao’ exhibits the unique reproductive trait of self-compatibility combined with cross-incompatibility, contrasting with typical Prunus species in this way. In preliminary studies involving controlled pollination assays, we showed complete pollen tube arrest in cross-pollinated styles, whereas self-pollination enabled full tube elongation. S-genotyping identified a homozygous S2S2 genotype with intact S2-RNase but a truncated PpSFB2 due to a frameshift mutation. Transcriptome profiling of the styles revealed 7937 differentially expressed genes (DEGs) between self- and cross-pollination treatments, with significant enrichment in plant MAPK signaling, plant–pathogen interactions, and plant hormone signaling transduction pathways (|Fold Change| ≥ 2, FDR < 0.01). Notably, PpSLFL3 (a pollen F-box gene) showed down-regulation in cross-pollinated styles, as validated by means of qRT-PCR. Protein interaction assays revealed direct binding between PpSLFL3 and S2-RNase via Y2H and BiFC analysis, suggesting its role in mediating SCF complex-dependent degradation. We propose that insufficient PpSLFL3 expression during cross-pollination disrupts SCF ubiquitin ligase complex-mediated degradation of non-self S2-RNase, leading to the toxic degradation of RNA in pollen tubes by S2-RNase. This mechanism is mechanistically similar to unilateral reproductive barriers in Solanaceae but represents a novel regulatory module in Rosaceae. Our findings provide critical insights into the evolution of cross-incompatibility systems and molecular breeding strategies for Prunus species. Full article
Show Figures

Figure 1

Back to TopTop