A Comprehensive Review of Polygenetic Signatures, Methodological Advances, and Implications for Coastal Boulder Deposits (CBDs) Assessment
Abstract
1. Introduction
2. Literature Search and Selection Strategy
3. Sources of Extreme Forcing
3.1. Tsunamis
3.2. Storms
4. Mechanics of Dislodgement and Transport
4.1. Detachment and Entrainment Thresholds
4.2. Transport Modes and Hydrodynamic Treatments
5. Morphological Signatures of CBDs: Insights and Limitations
6. Measurement and Monitoring Approaches for CBDs
6.1. Geomatics and Monitoring Tools
6.2. Chronological Frameworks for Boulder Movement
6.3. Laboratory and Numerical Modeling
7. Global Case Studies and the Storm–Tsunami Debate
7.1. Tsunami-Emplaced Boulder Deposits
7.2. Storm-Emplaced Boulder Deposits
7.3. Mixed-Origin and Polygenetic Deposits
8. Future Research Directions
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Causon-Deguara, J.; Gauci, R.; Inkpen, R. Coastal Boulder Deposits in the Mediterranean: A Comprehensive Review of Research and Findings. Mediterr. Geosci. Rev. 2025, 7, 255–274. [Google Scholar] [CrossRef]
- Cox, R.; Bourke, M.C.; Engel, M.; Kennedy, A.B.; Lau, A.; Suanez, S.; Boulton, S.J.; Oliveira, M.A.; Paris, R.; Salmanidou, D.; et al. Understanding Extreme-Wave Hazards on High-Energy Coasts Requires a Standardised Approach to Field Data Collection: Analysis and Recommendations. EGUsphere 2025, 2025, 1913. [Google Scholar] [CrossRef]
- Gharnate, A.; Taouali, O.; Mhammdi, N. Shoreline Change Assessment of the Moroccan Atlantic Coastline Using DSAS Techniques. J. Coast. Res. 2024, 40, 418–435. [Google Scholar] [CrossRef]
- da Costa, P.J.M. Sedimentological Signatures of Extreme Marine Inundations. Ph.D. Thesis, University of Lisbon, Lisboa, Portugal, 2012. [Google Scholar]
- Galindo, I.; Romero, C.; Martín-González, E.; Sánchez, N.; Vegas, J.; Lario, J. An Extreme Wave Event in Timanfaya National Park: Possible First Geological Evidence of the 1755 Lisbon Tsunami in Lanzarote, Canary Islands. Earth Surf. Process. Landf. 2024, 49, 4133–4153. [Google Scholar] [CrossRef]
- Donnelly, J.P. Reconstructing Tropical Cyclone Activity from Sedimentary Archives. Annu. Rev. Earth Planet. Sci. 2025, 53, 251–281. [Google Scholar] [CrossRef]
- Switzer, A.D. Coastal Hazards: Storms and Tsunamis. In Coastal Environments and Global Change; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 104–127. [Google Scholar]
- Engel, M.; May, S.M.; Pilarczyk, J.; Brill, D.; Garrett, E. Geological Records of Tsunamis and Other Extreme Waves: Concepts, Applications and a Short History of Research. In Geological Records of Tsunamis and Other Extreme Waves; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–20. [Google Scholar]
- Elko, N.; Dietrich, C.; Cialone, M.; Stockdon, H.; Bilskie, M.W.; Boyd, B.; Charbonneau, B.; Cox, D.; Dresback, K.; Elgar, S. Advancing the Understanding of Storm Processes and Impacts. Shore Beach 2019, 87, 37–51. [Google Scholar]
- Naylor, L.A.; Spencer, T.; Lane, S.N.; Darby, S.E.; Magilligan, F.J.; Macklin, M.G.; Möller, I. Stormy Geomorphology: Geomorphic Contributions in an Age of Climate Extremes. Earth Surf. Process. Landf. 2017, 42, 166–190. [Google Scholar] [CrossRef]
- Wright, L.D.; Thom, B.G. Coastal Morphodynamics and Climate Change: A Review of Recent Advances. J. Mar. Sci. Eng. 2023, 11, 1997. [Google Scholar] [CrossRef]
- Nott, J. Extremely High-Energy Wave Deposits inside the Great Barrier Reef, Australia: Determining the Cause—Tsunami or Tropical Cyclone. Mar. Geol. 1997, 141, 193–207. [Google Scholar] [CrossRef]
- Nott, J. Tsunami or Storm Waves?—Determining the Origin of a Spectacular Field of Wave Emplaced Boulders Using Numerical Storm Surge and Wave Models and Hydrodynamic Transport Equations. J. Coast. Res. 2003, 19, 348–356. [Google Scholar]
- Goto, K.; Chavanich, S.A.; Imamura, F.; Kunthasap, P.; Matsui, T.; Minoura, K.; Sugawara, D.; Yanagisawa, H. Distribution, Origin and Transport Process of Boulders Deposited by the 2004 Indian Ocean Tsunami at Pakarang Cape, Thailand. Sediment. Geol. 2007, 202, 821–837. [Google Scholar] [CrossRef]
- Mhammdi, N.; Medina, F.; Kelletat, D.; Ahmamou, M.; Aloussi, L. Large Boulders along the Rabat Coast (Morocco); Possible Emplacement by the November, 1st, 1755 A.D. Tsunami. Sci. Tsunami Hazards 2008, 27, 17–30. [Google Scholar]
- De Martini, P.M.; Pantosti, D.; Sakellariou, D.; Camerlenghi, A. Historical and Pre-Historical Tsunamis in the Mediterranean and Its Connected Seas: Geological Signatures, Generation…. Mar. Geol. 2014, 354, 81–109. [Google Scholar] [CrossRef]
- Dewey, J.F.; Ryan, P.D. Storm, Rogue Wave, or Tsunami Origin for Megaclast Deposits in Western Ireland and North Island, New Zealand? Proc. Natl. Acad. Sci. USA 2017, 114, E10639–E10647. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.; Jahn, K.L.; Watkins, O.G.; Cox, P. Extraordinary Boulder Transport by Storm Waves (West of Ireland, Winter 2013–2014), and Criteria for Analysing Coastal Boulder Deposits. Earth-Sci. Rev. 2018, 177, 623–636. [Google Scholar] [CrossRef]
- Leijnse, T.W.; van Ormondt, M.; van Dongeren, A.; Aerts, J.C.; Muis, S. Estimating Nearshore Infragravity Wave Conditions at Large Spatial Scales. Front. Mar. Sci. 2024, 11, 1355095. [Google Scholar] [CrossRef]
- Scheffers, A.; Kelletat, D.; Haslett, S.; Scheffers, S.; Browne, T. Coastal Boulder Deposits in Galway Bay and the Aran Islands, Western Ireland. Z. Für Geomorphologie. Suppl. 2010, 54, 247. [Google Scholar] [CrossRef]
- Antunes, C.; Rocha, C.; Catita, C. Coastal Flood Assessment Due to Sea Level Rise and Extreme Storm Events: A Case Study of the Atlantic Coast of Portugal’s Mainland. Geosciences 2019, 9, 239. [Google Scholar] [CrossRef]
- Dewey, J.; Goff, J.; Ryan, P. The Origins of Marine and Non-Marine Boulder Deposits: A Brief Review. Nat. Hazards 2021, 109, 1981–2002. [Google Scholar] [CrossRef]
- Lin, J.-H.; Chang, Y.-W.; Chen, G.-Y. Boulder Transportation on the Flat Bed by Dam Break. J. Earthq. Tsunami 2022, 16, 2241002. [Google Scholar] [CrossRef]
- Barrocu, G.; Eslamian, S. Geomorphology and Flooding. In Flood Handbook; CRC Press: Boca Raton, FL, USA, 2022; pp. 23–54. [Google Scholar]
- Houseago, R.; Hodge, R.; Asher, B.; Ferguson, R.; Hackney, C.; Hardy, R.; Hoey, T.; Johnson, J.; Rice, S.; Yager, E. Quantifying Bed Surface Roughness in Bedrock and Boulder-bed Rivers. J. Geophys. Res. Earth Surf. 2025, 130, e2024JF007996. [Google Scholar] [CrossRef]
- Altomare, C.; Tafuni, A.; Domínguez, J.M.; Crespo, A.J.; Gironella, X.; Sospedra, J. SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure. J. Mar. Sci. Eng. 2020, 8, 826. [Google Scholar] [CrossRef]
- Torres-Freyermuth, A.; Medellin, G.; Martin, G.U.; Puleo, J.A. A Virtual Laboratory for Conducting “Hands-on” Experiments on Water Wave Mechanics. Cont. Shelf Res. 2022, 243, 104760. [Google Scholar] [CrossRef]
- Boesl, F.; Engel, M.; Eco, R.C.; Galang, J.B.; Gonzalo, L.A.; Llanes, F.; Quix, E.; Brückner, H. Digital Mapping of Coastal Boulders–High-resolution Data Acquisition to Infer Past and Recent Transport Dynamics. Sedimentology 2020, 67, 1393–1410. [Google Scholar] [CrossRef]
- Jones, L.; Hobbs, P. The Application of Terrestrial LiDAR for Geohazard Mapping, Monitoring and Modelling in the British Geological Survey. Remote Sens. 2021, 13, 395. [Google Scholar] [CrossRef]
- Ok, E. Traditional Surveying vs. UAV Drone-Based Structure-from-Motion Advancements in Topographical Mapping Accuracy and Efficiency. 2025. Available online: https://www.researchgate.net/publication/388177304_Traditional_Surveying_vs_UAV_Drone-Based_Structure-from-Motion_Advancements_in_Topographical_Mapping_Accuracy_and_Efficiency (accessed on 22 July 2025).
- Brill, D.; May, S.M.; Mhammdi, N.; King, G.; Lehmann, B.; Burow, C.; Wolf, D.; Zander, A.; Brückner, H. Evaluating Optically Stimulated Luminescence Rock Surface Exposure Dating as a Novel Approach for Reconstructing Coastal Boulder Movement on Decadal to Centennial Timescales. Earth Surf. Dyn. 2021, 9, 205–234. [Google Scholar] [CrossRef]
- Marras, S.; Mandli, K.T. Modeling and Simulation of Tsunami Impact: A Short Review of Recent Advances and Future Challenges. Geosciences 2021, 11, 5. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lo, P.H.-Y.; Shi, H.; Huang, Z. Numerical Modeling of Generation of Landslide Tsunamis: A Review. J. Earthq. Tsunami 2022, 16, 2241001. [Google Scholar] [CrossRef]
- Jazaeri, S.A.; Nistor, I.; Mohammadian, A.; Liu, X. A Critical Review on the Tsunami-Induced Scour around Structures. Coast. Eng. J. 2024, 66, 563–590. [Google Scholar] [CrossRef]
- Cukur, D.; Wang, X.; Micallef, A.; Horozal, S.; Um, I.-K.; Kong, G.-S.; Kim, S.-P.; Liu, Y. Tsunami Hazard Potential of Submarine Landslides in the Southwestern East Sea (Sea of Japan). Nat. Hazards 2025, 121, 16447–16479. [Google Scholar] [CrossRef]
- Medina, F.; Mhammdi, N.; Chiguer, A.; Akil, M.; Jaaidi, E. The Rabat and Larache Boulder Fields; New Examples of High-Energy Deposits Related to Storms and Tsunami Waves in North-Western Morocco. Nat. Hazards 2011, 59, 725–747. [Google Scholar] [CrossRef]
- Köhler, M.; Lau, A.; Nakata, K.; Goto, K.; Goff, J.; Köhler, D.; Penisoni, M. Discovery of the World’s Largest Cliff-Top Boulder: Initial Insights and Numerical Simulation of Its Transport on a 30–40 m High Cliff on Tongatapu (Tonga). Mar. Geol. 2025, 487, 107567. [Google Scholar] [CrossRef]
- Song, L.; An, C. Extraction of Tsunami Signals from Coupled Seismic and Tsunami Waves. J. Mar. Sci. Eng. 2025, 13, 419. [Google Scholar] [CrossRef]
- Sarkawi, G.M.; Feng, L.; McCaughey, J.W.; Meltzner, A.J.; Susilo, S.; Muksin, U.; Socquet, A.; Oktari, R.S.; Adi, S.P.; Bürgmann, R. Insights into Tectonic Hazards since the 2004 Indian Ocean Earthquake and Tsunami. Nat. Rev. Earth Environ. 2025, 6, 17–34. [Google Scholar] [CrossRef]
- Mavroulis, S.; Mavrouli, M.; Sarantopoulou, A.; Antonarakou, A.; Lekkas, E. Increased Preparedness During the 2025 Santorini–Amorgos (Greece) Earthquake Swarm and Comparative Insights from Recent Cases for Civil Protection and Disaster Risk Reduction. GeoHazards 2025, 6, 32. [Google Scholar] [CrossRef]
- Androsov, A.; Harig, S.; Fuchs, A.; Immerz, A.; Rakowsky, N.; Hiller, W.; Danilov, S. Tsunami Wave Propagation. In Wave Propagation Theories and Applications; IntechOpen: London, UK, 2025. [Google Scholar]
- Farahmandpour, O.; Marsono, A.K.; Forouzani, P.; Tap, M.M.; Abu Bakar, S. Experimental Simulation of Tsunami Surge and Its Interaction with Coastal Structure. Int. J. Prot. Struct. 2020, 11, 258–280. [Google Scholar] [CrossRef]
- Sugawara, D.; Goto, K.; Jaffe, B.E. Numerical Models of Tsunami Sediment Transport—Current Understanding and Future Directions. Mar. Geol. 2014, 352, 295–320. [Google Scholar] [CrossRef]
- Cas, R.; Wright, J.V.; Giordano, G. Surface Sedimentary (Epiclastic) Processes and Deposits in Volcanic Environments: Response to Volcanic Events, and Reconstructing Paleo-Volcanic Settings. In Volcanology: Processes, Deposits, Geology and Resources; Springer: Berlin/Heidelberg, Germany, 2024; pp. 985–1078. [Google Scholar]
- Costa, P.J.; Andrade, C. Tsunami Deposits: Present Knowledge and Future Challenges. Sedimentology 2020, 67, 1189–1206. [Google Scholar] [CrossRef]
- Nguyen, A. Sedimentological Reconstruction of Hurricane Storm Surges from a Carbonate Reef Coastline at Anegada, British Virgin Islands. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2025. [Google Scholar]
- Nesteckytė, L.; Stankūnavičius, G.; Kelpšaitė-Rimkienė, L.; Šepić, J. 2023 November Storm in the Port of Klaipeda; Why Was the Port Closed? Pure Appl. Geophys. 2024, 181, 3173–3188. [Google Scholar] [CrossRef]
- Emerson, O.D. Assessment of Dune Change Using Historical Aerial and Satellite Photos, Topographic Surveys, and Wave Data at Toro Creek Beach. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2024. [Google Scholar]
- Bourman, R.; Murray-Wallace, C.; Panda, D.; Buckman, S.; Banerjee, D.; Ryan, D.; White, L. Tsunami or Storm? A High-Level Coastal Boulder Field on the Southern Tip of Eyre Peninsula, South Australia. Aust. J. Earth Sci. 2024, 71, 52–66. [Google Scholar] [CrossRef]
- Karagiorgos, J.; Patlakas, P.; Vervatis, V.; Sofianos, S. The Role of Ocean Penetrative Solar Radiation in the Evolution of Mediterranean Storm Daniel. Remote Sens. 2025, 17, 2684. [Google Scholar] [CrossRef]
- May, S.M.; Engel, M.; Brill, D.; Squire, P.; Scheffers, A.; Kelletat, D. Coastal Hazards from Tropical Cyclones and Extratropical Winter Storms Based on Holocene Storm Chronologies. In Coastal Hazards; Springer: Berlin, Germany, 2012; pp. 557–585. [Google Scholar]
- Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M.M.; Gaertner, M.A.; Hatzaki, M.; Homar, V.; Khodayar, S.; Korres, G. Mediterranean Cyclones: Current Knowledge and Open Questions on Dynamics, Prediction, Climatology and Impacts. Weather Clim. Dyn. 2022, 3, 173–208. [Google Scholar] [CrossRef]
- Kennedy, A.B.; Cox, R.; Dias, F. Storm Waves May Be the Source of Some “Tsunami” Coastal Boulder Deposits. Geophys. Res. Lett. 2021, 48, e2020GL090775. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, W.; Kelletat, D.; Kuckuck, M. Boulder Ridges and Washover Features in Galway Bay, Western Ireland. J. Coast. Res. 2017, 33, 997–1021. [Google Scholar] [CrossRef]
- Weiss, R.; Diplas, P. Untangling Boulder Dislodgement in Storms and Tsunamis: Is It Possible with Simple Theories? Geochem. Geophys. Geosystems 2015, 16, 890–898. [Google Scholar] [CrossRef]
- Souza, J.; Dandenault, P.; Santos, A.; Riccobono, J.; Migliozzi, M.; Kapali, S.; Kerr, R.; Mesquita, R.; Batista, I.; Wu, Q. Impacts of Storm Electric Fields and Traveling Atmospheric Disturbances over the Americas during 23–24 April 2023 Geomagnetic Storm: Experimental Analysis. J. Geophys. Res. Space Phys. 2024, 129, e2024JA032698. [Google Scholar] [CrossRef]
- Oh, J.-E.; Jeong, W.-M.; Chang, Y.S.; Oh, S.-H. On the Separation Period Discriminating Gravity and Infragravity Waves off Gyeongpo Beach, Korea. J. Mar. Sci. Eng. 2020, 8, 167. [Google Scholar] [CrossRef]
- Cox, R.; Ardhuin, F.; Dias, F.; Autret, R.; Beisiegel, N.; Earlie, C.; Herterich, J.; Kennedy, A.; Paris, R.; Raby, A.; et al. Systematic Review Shows That Work Done by Storm Waves Can Be Misinterpreted as Tsunami-Related Because Commonly Used Hydrodynamic Equations Are Flawed. Front. Mar. Sci. 2020, 7, 4. [Google Scholar] [CrossRef]
- Thompson, C.; Young, A.; Dickson, M. Wave Impacts on Coastal Cliffs: Do Bigger Waves Drive Greater Ground Motion? Earth Surf. Process. Landf. 2019, 44, 2849–2860. [Google Scholar] [CrossRef]
- Priestley, M.D.; Catto, J.L. Future Changes in the Extratropical Storm Tracks and Cyclone Intensity, Wind Speed, and Structure. Weather Clim. Dyn. Discuss. 2021, 3, 337–360. [Google Scholar] [CrossRef]
- Leszczyńska, K.; Alexanderson, H.; Clemmensen, L.B.; Giza, A.; Lorenz, S.; Moskalewicz, D.; Oliński, P.; Paprotny, D.; Rosentau, A.; Rutgersson, A.; et al. A Review of Storms and Marine Coastal Flooding in the Baltic Sea–Insights from Instrumental, Historical and Sedimentary Record. Earth-Sci. Rev. 2025, 266, 105137. [Google Scholar] [CrossRef]
- Masselink, G.; Brooks, S.; Poate, T.; Stokes, C.; Scott, T. Coastal Dune Dynamics in Embayed Settings with Sea-Level Rise–Examples from the Exposed and Macrotidal North Coast of SW England. Mar. Geol. 2022, 450, 106853. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global Probabilistic Projections of Extreme Sea Levels Show Intensification of Coastal Flood Hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef] [PubMed]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Hoeke, R.K.; McInnes, K.L.; Kruger, J.C.; McNaught, R.J.; Hunter, J.R.; Smithers, S.G. Widespread Inundation of Pacific Islands Triggered by Distant-Source Wind-Waves. Glob. Planet. Change 2013, 108, 128–138. [Google Scholar] [CrossRef]
- Haider, R.; Ali, S.; Hoffmann, G.; Reicherter, K. Tsunami Inundation and Vulnerability Analysis on the Makran Coast, Pakistan. Nat. Hazards Earth Syst. Sci. 2024, 24, 3279–3290. [Google Scholar] [CrossRef]
- Han, H.; Liu, H.; Chan, A.; Mcmanus, T. Three-Dimensional Finite Element Modelling of Excavation-Induced Tunnel Wall Movement and Damage: A Case Study. Sādhanā 2019, 44, 185. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Scotto, M.G.; Barbosa, S.; de Andrade, C.F.; da Conceição Freitas, M. Morphological Controls and Statistical Modelling of Boulder Transport by Extreme Storms. Mar. Geol. 2020, 426, 106216. [Google Scholar] [CrossRef]
- Biolchi, S.; Furlani, S.; Devoto, S.; Scicchitano, G.; Korbar, T.; Vilibić, I.; Šepić, J. The Origin and Dynamics of Coastal Boulders in a Semi-Enclosed Shallow Basin: A Northern Adriatic Case Study. Mar. Geol. 2019, 411, 62–77. [Google Scholar] [CrossRef]
- Corradino, M.; Faraci, C.; Monaco, C.; Pepe, F. Coastal Boulder Production Controlled by Columnar Joints of Ignimbrite and Extreme Waves: Insights from the High-Energy Coast of Pantelleria Island (Sicily Channel, Mediterranean Sea). Nat. Hazards 2025, 121, 3621–3655. [Google Scholar] [CrossRef]
- Andriani, G.F.; Loiotine, L. Multidisciplinary Approach for Assessment of the Factors Affecting Geohazard in Karst Valley: The Case Study of Gravina Di Petruscio (Apulia, South Italy). Environ. Earth Sci. 2020, 79, 458. [Google Scholar] [CrossRef]
- Cas, R.; Wright, J.V.; Giordano, G. Terminology for Volcanic Deposits and Rocks: Descriptive to Genetic Nomenclature, with Key Observations and Steps. In Volcanology: Processes, Deposits, Geology and Resources; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1121–1160. [Google Scholar]
- Moses, C.A. Rock Coast Geomodel: Process–Response Dynamics, Resilience and Vulnerability. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2025, 30, 209–235. [Google Scholar] [CrossRef]
- Davidson, T.M.; Altieri, A.H.; Ruiz, G.M.; Torchin, M.E. Bioerosion in a Changing World: A Conceptual Framework. Ecol. Lett. 2018, 21, 422–438. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, P. Sediment Gravity Flow—The Conceptual Problems. Earth-Sci. Rev. 2003, 62, 265–281. [Google Scholar] [CrossRef]
- Maniatis, G.; Hoey, T.; Hodge, R.; Rickenmann, D.; Badoux, A. Inertial Drag and Lift Forces for Coarse Grains on Rough Alluvial Beds Measured Using In-Grain Accelerometers. Earth Surf. Dyn. 2020, 8, 1067–1099. [Google Scholar] [CrossRef]
- Anand, A.; Beg, M.; Kumar, N. Experimental Studies and Analysis on Mobilization of the Cohesionless Sediments through Alluvial Channel: A Review. Civ. Eng. J. 2021, 7, 915–936. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Paris, R.; Tanaka, N. Reassessment of Hydrodynamic Equations: Minimum Flow Velocity to Initiate Boulder Transport by High Energy Events (Storms, Tsunamis). Mar. Geol. 2011, 281, 70–84. [Google Scholar] [CrossRef]
- Pérez-Alberti, A.; Trenhaile, A.S. An Initial Evaluation of Drone-based Monitoring of Boulder Beaches in Galicia, North-western Spain. Earth Surf. Process. Landf. 2015, 40, 105–111. [Google Scholar] [CrossRef]
- Weiss, R. The Mystery of Boulders Moved by Tsunamis and Storms. Mar. Geol. 2012, 295–298, 28–33. [Google Scholar] [CrossRef]
- Nandasena, N.A.K. Chapter 29—Perspective of Incipient Motion Formulas: Boulder Transport by High-Energy Waves. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 641–659. ISBN 978-0-12-815686-5. [Google Scholar]
- Kang, H.J. Cross-Shore Sediment Transport in Relation to Waves and Currents in a Groin Compartment; Old Dominion University: Norfolk, VA, USA, 1987; ISBN 979-8-206-27913-9. [Google Scholar]
- Sha, S.; Dyson, A.P.; Kefayati, G.; Tolooiyan, A. Modelling of Debris Flow-Boulder-Barrier Interactions Using the Coupled Eulerian Lagrangian Method. Appl. Math. Model. 2024, 127, 143–171. [Google Scholar] [CrossRef]
- van Aken, J. Earth Observation-Driven Analysis of Flood Extent in Mangrove Areas under Tropical Storms. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2025. [Google Scholar]
- Newman, J.N. Marine Hydrodynamics; The MIT press: Cambridge, MA, USA, 2018; ISBN 0-262-53482-7. [Google Scholar]
- Cox, R. Megagravel Deposits on the West Coast of Ireland Show the Impacts of Severe Storms. Weather 2020, 75, 72–77. [Google Scholar] [CrossRef]
- Wang, F.Z.; Animasaun, I.; Muhammad, T.; Okoya, S. Recent Advancements in Fluid Dynamics: Drag Reduction, Lift Generation, Computational Fluid Dynamics, Turbulence Modelling, and Multiphase Flow. Arab. J. Sci. Eng. 2024, 49, 10237–10249. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, A.; Wang, D.; Shi, Y.; Dong, X. Numerical Analysis of Motion Characteristics of Sliding or Rolling and Saltation of Sediment Particles under Turbulent Flow. Water 2022, 14, 1506. [Google Scholar] [CrossRef]
- Herterich, J.; Dias, F. Potential Flow over a Submerged Rectangular Obstacle: Consequences for Initiation of Boulder Motion. Eur. J. Appl. Math. 2020, 31, 646–681. [Google Scholar] [CrossRef]
- Stols, K. Incipient Motion of Boulders in Open Channel Flow. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2018. [Google Scholar]
- Cox, R.; o’Boyle, L.; Cytrynbaum, J. Imbricated Coastal Boulder Deposits Are Formed by Storm Waves, and Can Preserve a Long-Term Storminess Record. Sci. Rep. 2019, 9, 10784. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hu, N.; Sun, G.; Yang, B. Study on the Influence of Rock Shape on Rolling Distance. Appl. Sci. 2023, 13, 11351. [Google Scholar] [CrossRef]
- Nott, J. Waves, Coastal Boulder Deposits and the Importance of the Pre-Transport Setting. Earth Planet. Sci. Lett. 2003, 210, 269–276. [Google Scholar] [CrossRef]
- Miller, G. Impulse Waves Generated by Gravitationally-Accelerated Granular Landslides in a Large Scale Flume. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 2016. [Google Scholar]
- Watanabe, M.; Goto, K.; Imamura, F.; Hongo, C. Numerical Identification of Tsunami Boulders and Estimation of Local Tsunami Size at Ibaruma Reef of Ishigaki Island, Japan. Isl. Arc 2016, 25, 316–332. [Google Scholar] [CrossRef]
- Erdmann, W.; Kelletat, D.; Scheffers, A.; Haslett, S.K. Origin and Formation of Coastal Boulder Deposits at Galway Bay and the Aran Islands, Western Ireland; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 3-319-16333-7. [Google Scholar]
- Bryant, E.A.; Young, R.W.; Price, D.M. Tsunami as a Major Control on Coastal Evolution, Southeastern Australia. J. Coast. Res. 1996, 12, 831–840. [Google Scholar]
- Billson, O.; Russell, P.; Davidson, M. Storm Waves at the Shoreline: When and Where Are Infragravity Waves Important? J. Mar. Sci. Eng. 2019, 7, 139. [Google Scholar] [CrossRef]
- Cheriton, O.M.; Storlazzi, C.D.; Rosenberger, K.J. Observations of Wave Transformation over a Fringing Coral Reef and the Importance of Low-Frequency Waves and Offshore Water Levels to Runup, Overwash, and Coastal Flooding. J. Geophys. Res. Ocean. 2016, 121, 3121–3140. [Google Scholar] [CrossRef]
- McGovern, D.J.; Allsop, W.; Rossetto, T.; Chandler, I. Large-Scale Experiments on Tsunami Inundation and Overtopping Forces at Vertical Sea Walls. Coast. Eng. 2023, 179, 104222. [Google Scholar] [CrossRef]
- Sanad, H.; Oueld lhaj, M.; Zouahri, A.; Saafadi, L.; Dakak, H.; Mouhir, L. Groundwater Pollution by Nitrate and Salinization in Morocco: A Comprehensive Review. J. Water Health 2024, 22, 1756–1773. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Lhaj, M.O.; Dakak, H.; Manhou, K.; Zouahri, A. Monte Carlo Simulation for Evaluating Spatial Dynamics of Toxic Metals and Potential Health Hazards in Sebou Basin Surface Water. Sci. Rep. 2025, 15, 29471. [Google Scholar] [CrossRef] [PubMed]
- Manhou, K.; Taghouti, M.; Moussadek, R.; Elyacoubi, H.; Bennani, S.; Zouahri, A.; Ghanimi, A.; Sanad, H.; Oueld Lhaj, M.; Hmouni, D.; et al. Performance, Agro-Morphological, and Quality Traits of Durum Wheat (Triticum Turgidum L. Ssp. Durum Desf.) Germplasm: A Case Study in Jemâa Shaïm, Morocco. Plants 2025, 14, 1508. [Google Scholar] [CrossRef]
- Oueld Lhaj, M.; Moussadek, R.; Mouhir, L.; Sanad, H.; Manhou, K.; Iben Halima, O.; Yachou, H.; Zouahri, A.; Mdarhri Alaoui, M. Application of Compost as an Organic Amendment for Enhancing Soil Quality and Sweet Basil (Ocimum Basilicum L.) Growth: Agronomic and Ecotoxicological Evaluation. Agronomy 2025, 15, 1045. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Lhaj, M.O.; Zahidi, K.; Dakak, H.; Manhou, K.; Zouahri, A. Ecological and Human Health Hazards Evaluation of Toxic Metal Contamination in Agricultural Lands Using Multi-Index and Geostatistical Techniques across the Mnasra Area of Morocco’s Gharb Plain Region. J. Hazard. Mater. Adv. 2025, 18, 100724. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Lhaj, M.O.; Dakak, H.; Zouahri, A. Geospatial Analysis of Trace Metal Pollution and Ecological Risks in River Sediments from Agrochemical Sources in Morocco’s Sebou Basin. Sci. Rep. 2025, 15, 16701. [Google Scholar] [CrossRef]
- Hoffmeister, D. Mapping of Subaerial Coarse Clasts. In Geological Records of Tsunamis and Other Extreme Waves; Elsevier: Amsterdam, The Netherlands, 2020; pp. 169–184. [Google Scholar]
- Sedrati, M.; Morales, J.A.; El M’rini, A.; Anthony, E.J.; Bulot, G.; Le Gall, R.; Tadibaght, A. Using UAV and Structure-From-Motion Photogrammetry for the Detection of Boulder Movement by Storms on a Rocky Shore Platform in Laghdira, Northwest Morocco. Remote Sens. 2022, 14, 4102. [Google Scholar] [CrossRef]
- Goodwin, N.; Armston, J.; Muir, J.; Stiller, I. Monitoring Gully Change: A Comparison of Airborne and Terrestrial Laser Scanning Using a Case Study from Aratula, Queensland. Geomorphology 2017, 282, 195–208. [Google Scholar] [CrossRef]
- Vecchi, E. Impact of Geomatic Techniques on Topo-Bathymetric Surveys for Coastal Analysis. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2023. [Google Scholar]
- Shah-Hosseini, M.; Saleem, A.; Mahmoud, A.-M.A.; Morhange, C. Coastal Boulder Deposits Attesting to Large Wave Impacts on the Mediterranean Coast of Egypt. Nat. Hazards 2016, 83, 849–865. [Google Scholar] [CrossRef]
- Roig Munar, F.X.; Martín-Prieto, J.; Rodríguez-Perea, A.; Gelabert, B. Gloria Storm Effects on the Coastal Boulders East of Minorca (Balearic Islands). Environ. Earth Sci. 2023, 82, 176. [Google Scholar] [CrossRef]
- Roig-Munar, F.X.; Gelabert, B.; Rodríguez-Perea, A.; Martín-Prieto, J.Á.; Vilaplana, J.M. Storm or Tsunamis: Boulder Deposits on the Rocky Coasts of the Balearic Islands (Spain). Mar. Geol. 2023, 463, 107112. [Google Scholar] [CrossRef]
- Schneider, B.; Hoffmann, G.; Falkenroth, M.; Grade, J. Tsunami and Storm Sediments in Oman: Characterizing Extreme Wave Deposits Using Terrestrial Laser Scanning. J. Coast. Conserv. 2019, 23, 801–815. [Google Scholar] [CrossRef]
- Nakata, K.; Watanabe, M.; Goto, K. Modelling Emplacement of the World’s Largest Tsunami Boulder. Nat. Hazards 2025, 121, 12169–12193. [Google Scholar] [CrossRef]
- Louis, K.J.; Bellanova, P.; Justen, S.; Kautz, G.; Houbertz, S.; Arianoutsou, A.; Papanikolau, I.; Reicherter, K. Coastal Hazard Assessment Through 3D Mesh Analysis of Coastal Boulder Deposits from Extreme Wave Events in Greece; Copernicus Meetings: Miltenberg, Germany, 2025. [Google Scholar]
- Lindauer, S.; Hadden, C.S.; Macario, K.; Guilderson, T.P. Marine Biogenic Carbonates and Radiocarbon—A Retrospective on Shells and Corals with an Outlook on Challenges and Opportunities. Radiocarbon 2022, 64, 689–704. [Google Scholar] [CrossRef]
- Bromley, G.R.; Thouret, J.-C.; Schimmelpfennig, I.; Mariño, J.; Valdivia, D.; Rademaker, K.; del Pilar Vivanco Lopez, S.; Team, A.; Aumaître, G.; Bourlès, D. In Situ Cosmogenic 3He and 36Cl and Radiocarbon Dating of Volcanic Deposits Refine the Pleistocene and Holocene Eruption Chronology of SW Peru. Bull. Volcanol. 2019, 81, 64. [Google Scholar] [CrossRef]
- Petronis, M.S.; Holm, D.K.; Geissman, J.W.; Hacker, D.B.; Arnold, B.J. Paleomagnetic Results from the Eastern Caliente-Enterprise Zone, Southwestern Utah: Implications for Initiation of a Major Miocene Transfer Zone. Geosphere 2014, 10, 534–563. [Google Scholar] [CrossRef]
- Demirbilek, Z.; Rosati, J. Verification and Validation of the Coastal Modeling System. Report 1: Summary Report. 2011. Available online: https://www.researchgate.net/publication/277766501_Verification_and_Validation_of_the_Coastal_Modeling_System_Report_1_Summary_Report (accessed on 1 August 2025).
- Cozzuto, G.; Saillour, T.; Lupoi, G.; Cuomo, G.; Bourban, S.E. Validation of TELEMAC for Tsunami Inundation Modelling in Compliance with the NOAA-NTHMP Benchmark Test Cases. p. 93. Available online: https://henry.baw.de/items/f064db30-2af2-46a6-9113-d1b4c0b994bd (accessed on 1 August 2025).
- Cauquis, A. Development of a Numerical Model of Dispersive Propagation of Tsunamis. Ph.D. Thesis, Université de Bordeaux, Nouvelle-Aquitaine, France, 2022. [Google Scholar]
- Statler, C.M. A Multi-Scale Numerical Analysis of Wave Propagation Through Coastal Vegetation Using Proteus & XBeach. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2025. [Google Scholar]
- McCall, R.; Masselink, G.; Poate, T.; Roelvink, J.; Almeida, L.; Davidson, M.; Russell, P. Modelling Storm Hydrodynamics on Gravel Beaches with XBeach-G. Coast. Eng. 2014, 91, 231–250. [Google Scholar] [CrossRef]
- McCall, R.; Masselink, G.; Poate, T.; Roelvink, J.; Almeida, L. Modelling the Morphodynamics of Gravel Beaches during Storms with XBeach-G. Coast. Eng. 2015, 103, 52–66. [Google Scholar] [CrossRef]
- Foster, I.D.L.; Albon, A.J.; Bardell, K.M.; Fletcher, J.L.; Jardine, T.C.; Mothers, R.J.; Pritchard, M.A.; Turner, S.E. High Energy Coastal Sedimentary Deposits; an Evaluation of Depositional Processes in Southwest England. Earth Surf. Process. Landf. 1991, 16, 341–356. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Sansò, P. Boulders Transport by Catastrophic Waves along the Ionian Coast of Apulia (Southern Italy). Mar. Geol. 2000, 170, 93–103. [Google Scholar] [CrossRef]
- Scheffers, A. Paleotsunami Evidences from Boulder Deposits on Aruba, Curacao and Bonaire. Sci. Tsunami Hazards 2002, 20, 26. [Google Scholar]
- Williams, D.M.; Hall, A.M. Cliff-Top Megaclast Deposits of Ireland, a Record of Extreme Waves in the North Atlantic—Storms or Tsunamis? Mar. Geol. 2004, 206, 101–117. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Sansò, P. Large Boulder Accumulations by Extreme Waves along the Adriatic Coast of Southern Apulia (Italy). Quat. Int. 2004, 120, 173–184. [Google Scholar] [CrossRef]
- Spiske, M.; Böröcz, Z.; Bahlburg, H. The Role of Porosity in Discriminating between Tsunami and Hurricane Emplacement of Boulders—A Case Study from the Lesser Antilles, Southern Caribbean. Earth Planet. Sci. Lett. 2008, 268, 384–396. [Google Scholar] [CrossRef]
- Goto, K.; Miyagi, K.; Kawamata, H.; Imamura, F. Discrimination of Boulders Deposited by Tsunamis and Storm Waves at Ishigaki Island, Japan. Mar. Geol. 2010, 269, 34–45. [Google Scholar] [CrossRef]
- Barbano, M.; Pirrotta, C.; Gerardi, F. Large Boulders along the South-Eastern Ionian Coast of Sicily: Storm or Tsunami Deposits? Mar. Geol. 2010, 275, 140–154. [Google Scholar] [CrossRef]
- Etienne, S.; Paris, R. Boulder Accumulations Related to Storms on the South Coast of the Reykjanes Peninsula (Iceland). Geomorphology 2010, 114, 55–70. [Google Scholar] [CrossRef]
- Switzer, A.D.; Burston, J.M. Competing Mechanisms for Boulder Deposition on the Southeast Australian Coast. Geomorphology 2010, 114, 42–54. [Google Scholar] [CrossRef]
- Paris, R.; Naylor, L.A.; Stephenson, W.J. Boulders as a Signature of Storms on Rock Coasts. Mar. Geol. 2011, 283, 1–11. [Google Scholar] [CrossRef]
- Costa, P.J.M.; Andrade, C.; Freitas, M.C.; Oliveira, M.A.; da Silva, C.M.; Omira, R.; Taborda, R.; Baptista, M.A.; Dawson, A.G. Boulder Deposition during Major Tsunami Events. Earth Surf. Process. Landf. 2011, 36, 2054–2068. [Google Scholar] [CrossRef]
- Cox, R.; Zentner, D.B.; Kirchner, B.J.; Cook, M.S. Boulder Ridges on the Aran Islands (Ireland): Recent Movements Caused by Storm Waves, Not Tsunamis. J. Geol. 2012, 120, 249–272. [Google Scholar] [CrossRef]
- Scheffers, A.M.; Kinis, S. Stable Imbrication and Delicate/Unstable Settings in Coastal Boulder Deposits: Indicators for Tsunami Dislocation? Quat. Int. 2014, 332, 73–84. [Google Scholar] [CrossRef]
- Causon Deguara, J.; Gauci, R. Boulder and Megaclast Deposits on the South-East Coast of Malta: Signature of Storm or Tsunami Event? 2014. Available online: https://www.um.edu.mt/library/oar/bitstream/123456789/88216/1/Boulder_and_megaclast_deposits_on_the_south_east_coast_of_Malta_2014.pdf (accessed on 28 July 2025).
- Cox, R. RUI: Measuring the Effects of Winter Storms (2013–2014) on the Movement of Boulders in Western Ireland; NSF Award Number 1424668; Directorate for Geosciences: Alexandria, VA, USA, 2014; Volume 14, p. 24668. [Google Scholar]
- Prizomwala, S.P.; Gandhi, D.; Ukey, V.M.; Bhatt, N.; Rastogi, B.K. Coastal Boulders as Evidences of High-Energy Marine Events from Diu Island, West Coast of India: Storm or Palaeotsunami? Nat. Hazards 2015, 75, 1187–1203. [Google Scholar] [CrossRef]
- Hansom, J.D.; Switzer, A.D.; Pile, J. Chapter 11-Extreme Waves: Causes, Characteristics, and Impact on Coastal Environments and Society. In Coastal and Marine Hazards, Risks, and Disasters; Shroder, J.F., Ellis, J.T., Sherman, D.J., Eds.; Hazards and Disasters Series; Elsevier: Boston, MA, USA, 2015; pp. 307–334. ISBN 978-0-12-396483-0. [Google Scholar]
- Shaw, C.E.; Benson, L. Possible Tsunami Deposits on the Caribbean Coast of the Yucatán Peninsula. J. Coast. Res. 2015, 31, 1306–1316. [Google Scholar] [CrossRef]
- Öğretmen, N.; Cosentino, D.; Gliozzi, E.; Cipollari, P.; Iadanza, A.; Yildirim, C. Tsunami Hazard in the Eastern Mediterranean: Geological Evidence from the Anatolian Coastal Area (Silifke, Southern Turkey). Nat. Hazards 2015, 79, 1569–1589. [Google Scholar] [CrossRef]
- May, S.M.; Engel, M.; Brill, D.; Cuadra, C.; Lagmay, A.M.F.; Santiago, J.; Suarez, J.K.; Reyes, M.; Brückner, H. Block and Boulder Transport in Eastern Samar (Philippines) during Supertyphoon Haiyan. Earth Surf. Dyn. 2015, 3, 543–558. [Google Scholar] [CrossRef]
- Biolchi, S.; Furlani, S.; Antonioli, F.; Baldassini, N.; Causon Deguara, J.; Devoto, S.; Di Stefano, A.; Evans, J.; Gambin, T.; Gauci, R.; et al. Boulder Accumulations Related to Extreme Wave Events \hack\newline on the Eastern Coast of Malta. Nat. Hazards Earth Syst. Sci. 2016, 16, 737–756. [Google Scholar] [CrossRef]
- Bhatt, N.; Murari, M.K.; Ukey, V.; Prizomwala, S.P.; Singhvi, A.K. Geological Evidences of Extreme Waves along the Gujarat Coast of Western India. Nat. Hazards 2016, 84, 1685–1704. [Google Scholar] [CrossRef]
- Terry, J.P.; Oliver, G.J.H.; Friess, D.A. Ancient High-Energy Storm Boulder Deposits on Ko Samui, Thailand, and Their Significance for Identifying Coastal Hazard Risk. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 454, 282–293. [Google Scholar] [CrossRef]
- Kennedy, A.B.; Mori, N.; Zhang, Y.; Yasuda, T.; Chen, S.-E.; Tajima, Y.; Pecor, W.; Toride, K. Observations and Modeling of Coastal Boulder Transport and Loading During Super Typhoon Haiyan. Coast. Eng. J. 2016, 58, 1640004. [Google Scholar] [CrossRef]
- Cox, R.; Jahn, K.; Watkins, O. Movement of Boulders and Megagravel by Storm Waves. Geophys. Res. Abstr. 2016, 18, EPSC2016-10535. [Google Scholar]
- Causon Deguara, J.; Gauci, R. Evidence of Extreme Wave Events from Boulder Deposits on the South-East Coast of Malta (Central Mediterranean). Nat. Hazards 2017, 86, 543–568. [Google Scholar] [CrossRef]
- Gandhi, D.; Chavare, K.A.; Prizomwala, S.P.; Bhatt, N.; Bhatt, N.Y.; Mohan, K.; Rastogi, B.K. Testing the Numerical Models for Boulder Transport through High Energy Marine Wave Event: An Example from Southern Saurashtra, Western India. Quat. Int. 2017, 444, 209–216. [Google Scholar] [CrossRef]
- Geshi, N.; Maeno, F.; Nakagawa, S.; Naruo, H.; Kobayashi, T. Tsunami Deposits Associated with the 7.3ka Caldera-Forming Eruption of the Kikai Caldera, Insights for Tsunami Generation during Submarine Caldera-Forming Eruptions. J. Volcanol. Geotherm. Res. 2017, 347, 221–233. [Google Scholar] [CrossRef]
- Roig-Munar, F.X.; Vilaplana, J.M.; Rodríguez-Perea, A.; Martín-Prieto, J.Á.; Gelabert, B. Tsunamis Boulders on the Rocky Shores of Minorca (Balearic Islands). Nat. Hazards Earth Syst. Sci. 2018, 18, 1985–1998. [Google Scholar] [CrossRef]
- Haslett, S.K.; Wong, B.R. An Evaluation of Boulder Deposits along a Granite Coast Affected by the 2004 Indian Ocean Tsunami Using Revised Hydrodynamic Equations: Batu Ferringhi, Penang, Malaysia. J. Geol. 2019, 127, 527–541. [Google Scholar] [CrossRef]
- Watanabe, M.; Goto, K.; Imamura, F.; Kennedy, A.; Sugawara, D.; Nakamura, N.; Tonosaki, T. Modeling Boulder Transport by Coastal Waves on Cliff Topography: Case Study at Hachijo Island, Japan. Earth Surf. Process. Landf. 2019, 44, 2939–2956. [Google Scholar] [CrossRef]
- Johnson, M.E.; Guardado-France, R.; Johnson, E.M.; Ledesma-Vázquez, J. Geomorphology of a Holocene Hurricane Deposit Eroded from Rhyolite Sea Cliffs on Ensenada Almeja (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2019, 7, 193. [Google Scholar] [CrossRef]
- Abad, M.; Izquierdo, T.; Cáceres, M.; Bernárdez, E.; Rodriguez-Vidal, J. Coastal Boulder Deposit as Evidence of an Ocean-Wide Prehistoric Tsunami Originated on the Atacama Desert Coast (Northern Chile). Sedimentology 2020, 67, 1505–1528. [Google Scholar] [CrossRef]
- Minamidate, K.; Goto, K.; Watanabe, M.; Roeber, V.; Toguchi, K.; Sannoh, M.; Nakashima, Y.; Kan, H. Millennial Scale Maximum Intensities of Typhoon and Storm Wave in the Northwestern Pacific Ocean Inferred from Storm Deposited Reef Boulders. Sci. Rep. 2020, 10, 7218. [Google Scholar] [CrossRef] [PubMed]
- Kelletat, D.; Engel, M.; May, S.; Erdmann, W.; Scheffers, A.; Brückner, H. Erosive Impact of Tsunami and Storm Waves on Rocky Coasts and Post-Depositional Weathering of Coarse-Clast Deposits. In Geological Records of Tsunamis and Other Extreme Waves; Elsevier: Amsterdam, The Netherlands, 2020; pp. 561–584. ISBN 978-0-12-815686-5. [Google Scholar]
- Evelpidou, N.; Zerefos, C.; Synolakis, C.; Repapis, C.; Karkani, A.; Polidorou, M.; Saitis, G. Coastal Boulders on the SE Coasts of Cyprus as Evidence of Palaeo-Tsunami Events. J. Mar. Sci. Eng. 2020, 8, 812. [Google Scholar] [CrossRef]
- Higman, B.; Bourgeois, J. Chapter 6-Deposits of the 1992 Nicaragua Tsunami. In Tsunamiites, 2nd ed.; Shiki, T., Tsuji, Y., Yamazaki, T., Nanayama, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 85–107. ISBN 978-0-12-823939-1. [Google Scholar]
- Delle Rose, M.; Martano, P.; Orlanducci, L. Coastal Boulder Dynamics Inferred from Multi-Temporal Satellite Imagery, Geological and Meteorological Investigations in Southern Apulia, Italy. Water 2021, 13, 2426. [Google Scholar] [CrossRef]
- Minamidate, K.; Goto, K.; Kan, H. Numerical Estimation of Maximum Possible Sizes of Paleo-Earthquakes and Tsunamis from Storm-Derived Boulders. Earth Planet. Sci. Lett. 2022, 579, 117354. [Google Scholar] [CrossRef]
- Namegaya, Y.; Maemoku, H.; Shishikura, M.; Echigo, T. Evidence from Boulders for Extraordinary Tsunamis along Nankai Trough, Japan. Tectonophysics 2022, 842, 229487. [Google Scholar] [CrossRef]
- Korbar, T.; Navratil, D.; Denamiel, C.; Kordić, B.; Biolchi, S.; Vilibić, I.; Furlani, S. Coarse-Clast Storm Deposit and Solitary Boulders on the Island of Mana (NP Kornati, Central Adriatic, Croatia). Geosciences 2022, 12, 355. [Google Scholar] [CrossRef]
- Khan, A.; Singh, A.; Gadhavi, M.; Malik, J. MECHANISM OF BOULDER TRANSPORT DURING EXTREME WAVE EVENTS ALONG THE EASTERN FLANK OF THE ARABIAN SEA. ASEAN Eng. J. 2022, 12, 71–78. [Google Scholar] [CrossRef]
- Gong, S.-Y.; Liu, S.-C.; Siringan, F.; Gallentes, A.; Lin, H.-W.; Shen, C.-C. Multiple Severe Storms Revealed by Coral Boulders at Pasuquin, Northwestern Luzon, Philippines. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 606, 111195. [Google Scholar] [CrossRef]
- Watanabe, M.; Yoshii, T.; Roeber, V.; Goto, K.; Imamura, F. Derivation, Validation, and Numerical Implementation of a Two-Dimensional Boulder Transport Formulation by Coastal Waves. J. Earthq. Tsunami 2023, 17, 2250018. [Google Scholar] [CrossRef]
- Lario, J.; Spencer, C.; Bardají, T. Presence of Boulders Associated with an Extreme Wave Event in the Western Mediterranean (Cape Cope, Murcia, Spain): Possible Evidence of a Tsunami. J. Iber. Geol. 2023, 49, 115–132. [Google Scholar] [CrossRef]
- Fisher, S.; Goff, J.; Cundy, A.; Sear, D.; Terry, J.; LeVeque, R.J.; Adams, L.M.; Sahy, D. Hawaiian Legends of Coastal Devastation and Paleotsunami Reconstruction, Nu’u, Kaupō, Maui, Hawai’i. Mar. Geol. 2024, 477, 107408. [Google Scholar] [CrossRef]
- Khalfaoui, O.; Joudar, I.; Chahid, N.E.; Khalidi, K.E.; Minoubi, A.; Bouchkara, M.; Zourarah, B. The Safi Boulders (Morocco): Evidence of Past Extreme Wave Events. Mar. Geol. 2024, 470, 107265. [Google Scholar] [CrossRef]
- Dunán-Avila, P.; Authemayou, C.; Jaud, M.; Pedoja, K.; Jara-Muñoz, J.; Bertin, S.; Peñalver-Hernández, L.; Floc’h, F.; Nuñez-Labañino, A.; Winckler, P.; et al. Geomorphological Signatures of Known Hurricanes and Validation of Theoretical Emplacement Formulations: Coastal Boulder Deposits on Cuban Low-Lying Marine Terraces. Mar. Geol. 2025, 480, 107438. [Google Scholar] [CrossRef]
- Szczuciński, W.; Yawsangratt, S.; Soisa, T.; Kererattanasathian, V.; Saengsawang, S. Twenty Years After the Indian Ocean Tsunami-Andaman Sea Coast of Thailand Revisited; Copernicus Meetings: Miltenberg, Germany, 2025. [Google Scholar]
- Ganis, G.; Willoughby, R.; Cicimurri, D.; Whittecar, G.; Hageman, S. Evidence for Distal Bolide Impact and Tsunami Deposits in the Upper Atlantic Coastal Plain of Moore County (North Carolina, USA) Generated by the Eocene Chesapeake Bay Bolide Impact. Southeast. Geol. 2025, 55, 47–67. [Google Scholar]
- Paris, R.; Lavigne, F.; Hatté, C.; Betancort, J.F.; Flandrois, J.-P.; Vinçon-Laugier, A.; Poulallion, E.; Falvard, S.; Mutaqin, B.W.; Lécuyer, C. 14C Dating of Tsunami Deposits in Arid Environments: How Challenging Can It Be? The Example of La Graciosa, Canary Islands. Mar. Geol. 2025, 488, 107607. [Google Scholar] [CrossRef]
- Roberts, S.; Raby, A.; Boulton, S.J.; Allsop, W.; Antonini, A.; van Balen, I.; McGovern, D.; Adams, K.; Chandler, I.; Cels, J.; et al. Tsunami Boulder Transport in Coastal Environments: Insights from Physical Experiments and Dimensional Analysis. Mar. Geol. 2025, 480, 107474. [Google Scholar] [CrossRef]
- Amar, B.; Youcef, B.; Said, M.; Mourad, B. Tsunami Hazard along the Northwestern Algerian Coast: Evidence of Unusual Deposits, Boulders Accumulation and Tidal Waves Modeling. J. Seismol. 2025, 1–21. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Scicchitano, G.; Scardino, G.; Milella, M.; Piscitelli, A.; Mastronuzzi, G. Boulder Displacements along Rocky Coasts: A New Deterministic and Theoretical Approach to Improve Incipient Motion Formulas. Geomorphology 2022, 407, 108217. [Google Scholar] [CrossRef]
- Biolchi, S.; Denamiel, C.; Devoto, S.; Korbar, T.; Macovaz, V.; Scicchitano, G.; Vilibić, I.; Furlani, S. Impact of the October 2018 Storm Vaia on Coastal Boulders in the Northern Adriatic Sea. Water 2019, 11, 2229. [Google Scholar] [CrossRef]
- Vaccher, V.; Hastewell, L.; Devoto, S.; Corradetti, A.; Mantovani, M.; Korbar, T.; Furlani, S. The Application of UAV-Derived SfM-MVS Photogrammetry for the Investigation of Storm Wave Boulder Deposits on a Small Rocky Island in the Semi-Enclosed Northern Adriatic Sea. Geomat. Nat. Hazards Risk 2024, 15, 2295817. [Google Scholar] [CrossRef]
- Scardino, G.; Rovere, A.; Barile, C.; Nandasena, N.A.K.; Chauveau, D.; Dahm, M.; Boyden, P.; Bejarano, S.; Casella, E.; Kelly, H.; et al. Coastal Boulders Emplaced by Extreme Wave Events Impacting the ABC Islands (Aruba, Bonaire, Curaçao; Leeward Antilles, Caribbean). Quat. Sci. Rev. 2025, 349, 109136. [Google Scholar] [CrossRef]


| Criteria | Inclusion | Exclusion |
|---|---|---|
| Publication Type | Peer-reviewed research articles and review papers | Non-peer-reviewed sources, conference abstracts, gray literature |
| Time Frame | 1991–2025 | Studies published before 1991 |
| Language | English | Non-English publications |
| Scope of Study | Research focused on coastal boulder deposits (CBDs), extreme wave events (tsunami and storms), transport mechanisms, geomorphology, hazard assessment, or methodological advances | Studies unrelated to CBD dynamics, generic coastal processes without direct CBD focus |
| Methodological Detail | Studies providing clear data, methods, or modeling frameworks relevant to CBD assessment | Studies lacking methodological detail or presenting anecdotal/unsubstantiated observations |
| Database Source | Indexed in Web of Science or Scopus | Not indexed in major scientific databases |
| Region/Study | Projected Sea-Level Rise | Storm-Related Wave Height/Energy Change | Expected Effect on Boulder Transport | Reference |
|---|---|---|---|---|
| North Atlantic | +0.6–0.9 m (SSP5-8.5, CMIP6) | +10–20% increase in significant wave height during extreme events | Higher run-up elevations; enhanced frequency of boulder displacements observed in storm clusters | [62] |
| Western Mediterranean | +0.4–0.7 m | +15% increase in wave power and duration of storm seasons | Amplified overtopping and inland boulder transport on low-gradient coasts | [63] |
| Indian Ocean | +0.5–1.0 m | Increased cyclone intensity (+5–10% wind speed) | Greater capacity for storm waves to remobilize existing tsunami boulders | [64] |
| Pacific Islands | +0.6–1.1 m | +10–15% rise in typhoon wave energy | Increased coral boulder displacement and platform erosion | [65] |
| Arabian Sea | +0.5–0.8 m | More frequent high-energy storms (Category 4–5) | Enhanced susceptibility to repeated storm reworking of pre-existing tsunami ridges | [66] |
| Model | Core Equation/Approach | Key Input Parameters | Main Assumptions | Known Limitations | References | Multi-Proxy Integration |
|---|---|---|---|---|---|---|
| Nott (1997, 2003) | Simplified steady-flow IoM equations for lift and drag balance: (F_D + F_L = W) | Boulder mass, density, shape, flow velocity, drag/lift coefficients. | Steady, uniform, unidirectional flow; no turbulence; ignores transient peaks. | Overestimates required wave heights; neglects impulsive loading and irregular wave groups. | [12,13] | Morphology, Hydro-modeling |
| Nandasena, Paris & Tanaka (2011) | Time-varying hydrodynamic model incorporating drag, lift, buoyancy, and impulsive force over short durations. | Flow velocity (time-dependent), impulse, drag coefficient, exposure time. | Transient force peaks captured; assumes homogeneous flow field. | Limited by parameter calibration; complex for field use. | [78] | Morphology, Hydro-modeling, Site context |
| Pérez-Alberti & Trenhaile (2015) | Empirical model based on field-measured block geometry and wave energy dissipation on shore platforms. | Boulder volume, surface roughness, wave period, slope angle. | Empirical fit; assumes wave energy attenuation follows depth gradient. | Site-specific; cannot be generalized across lithologies. | [79] | Morphology, Hydro-modeling, Site context |
| Weiss (2012) | Incorporates drag and lift in non-hydrostatic conditions, includes inertia and buoyancy for transient wave impact. | Wave period, acceleration, boulder geometry, friction angle. | Considers acceleration but assumes simplified wave–boulder interaction. | Neglects 3D flow dynamics and turbulence. | [80] | Morphology, Hydro-modeling |
| Nandasena (2020) | Dynamic drag and impact model accounting for time-dependent wave force and boulder rotation. | Drag coefficient, impact time, moment arm, clast orientation. | Rotational forces considered; non-linear dynamics simplified. | Requires high-frequency wave data rarely available in field. | [81] | Morphology, Hydro-modeling, Site context |
| Multi-Proxy Attribution Framework | Integrative assessment using combined criteria: morphology, chronology, hydro-modeling, and site context. | Multi-source dataset (geomorphology, dating, modeling, field mapping). | Each proxy provides partial but complementary evidence; must be combined systematically. | Requires multidisciplinary data and standardization. | [5,18] | Morphology, Chronology, Hydro-modeling, Site context |
| Tool/Method | Typical Accuracy | Spatial Coverage/Resolution | Cost and Logistics | Primary Advantages | Main Limitations | Reference |
|---|---|---|---|---|---|---|
| RTK-GPS/ Differential GPS | ±2–5 cm horizontally, ±5–10 cm vertically | Local-scale (≤10 km2); point-based measurements | Low to moderate; rapid deployment, field-portable | High positional accuracy; ideal for baseline boulder mapping and repeated surveys | Limited coverage; time-intensive for large sites; poor performance under dense canopy or rough terrain | [18,111] |
| UAV-based Structure-from-Motion (SfM) Photogrammetry | ±5–10 cm (depending on GCPs and flight altitude) | Very high-resolution (<5 cm/pixel) orthomosaics and 3D models over 0.1–10 km2 | Moderate; requires UAV and processing software (e.g., Agisoft Metashape, Pix4D) | Rapid data acquisition; repeatable monitoring; low-cost 3D modeling of boulder movement | Sensitive to lighting/wind; requires GCPs for accuracy; limited in high-wind coastal zones | [66,112,113] |
| Terrestrial Laser Scanning (TLS) | ±1–3 cm (point spacing up to 1 cm) | Detailed coverage up to 1 km range; cm-scale 3D resolution | High cost; requires stable setup and post-processing | Ultra-high accuracy for 3D geometry and surface roughness; effective for cliff and ridge morphodynamics | Limited to line-of-sight; heavy and less mobile; high data volume | [5,114] |
| Airborne/ UAV LiDAR | ±2–5 cm (high-resolution UAV); ±10–20 cm (airborne) | Large-scale (tens of km2) with high vertical accuracy and vegetation penetration | High cost; requires specialized instruments and data processing | Broad spatial coverage; penetration through vegetation; repeatable for long-term monitoring | Expensive equipment and processing; limited accessibility in remote sites | [115,116] |
| Year | Study Area | Origin of Displacement (Tsunami vs. Storm) | References |
|---|---|---|---|
| 1991 | England | Storm and Tsunami waves | [126] |
| 1992 | Australia | Tsunami waves | [97] |
| 1997 | Australia | Tsunami waves | [12] |
| 2000 | Italy | Tsunami waves | [127] |
| 2002 | Southern Caribbean | Tsunami waves | [128] |
| 2003 | Gulf of Carpentaria, Australia | Tsunami waves | [13] |
| 2004 | Aran Islands, west coast of Ireland | Storm waves | [129] |
| 2004 | Southern Apulia, Adriatic coast, Italy | Storm and Tsunami wave | [130] |
| 2007 | Pakarang Cape, Thailand | Tsunami waves | [14] |
| 2008 | Aruba, Bonaire, and Curaçao | Hurricane waves | [131] |
| 2008 | Rabat, Morocco | Tsunami waves | [15] |
| 2010 | Ishigaki and Ryukyu Islands, Japan | Storm and Tsunami wave | [132] |
| 2010 | Sicily, Italy | Storm and Tsunami wave | [133] |
| 2010 | Reykjanes coast, Iceland | Storm waves | [134] |
| 2010 | Jervis Bay region, Australia | Storm and Tsunami wave | [135] |
| 2011 | Global perspective | Storm waves | [136] |
| 2011 | Algarve coast, Portugal | Tsunami waves | [137] |
| 2011 | Morocco | Storm and Tsunami wave | [36] |
| 2012 | Aran Islands (Ireland) | Storm waves | [138] |
| 2014 | Global perspective | Tsunami waves | [139] |
| 2014 | Coastal zone | Storm and Tsunami wave | [140] |
| 2014 | West coast of Ireland | Extreme storm events | [141] |
| Year | Study Area | Origin of Displacement (Tsunami vs. Storm) | References |
|---|---|---|---|
| 2015 | Diu Island, Gujarat coast, India | Tsunami waves | [142] |
| 2015 | Global perspective | Major tsunami/meteotsunami events | [143] |
| 2015 | Yucatán Peninsula, Mexico | Tsunami waves | [144] |
| 2015 | Southern Anatolia, Turkey | Tsunami waves | [145] |
| 2015 | Eastern Samar, Philippines | Haiyan storm waves and infragravity waves | [146] |
| 2016 | NE and E low-lying rocky coasts, Malta | Intense storm waves | [147] |
| 2016 | India Gujarat coast | Tsunamigenic | [148] |
| 2016 | Mediterranean coast, Egypt | Tsunami and repeated intense storm. | [111] |
| 2016 | Ko Samui (east coast), Thailand | Tropical cyclones (typhoons/storm waves) | [149] |
| 2016 | Calicoan Island, Philippines | Storm waves (Haiyan) | [150] |
| 2016 | Aran Islands, Ireland | Storms waves | [151] |
| 2017 | SE rocky coast, Malta | Storm waves | [152] |
| 2017 | Navabandar coast, India | Storm waves | [153] |
| 2017 | Kuchinoerabujima Islands, Japan | Tsunami waves | [154] |
| Year | Study Area | Origin of Displacement (Tsunami vs. Storm) | References |
|---|---|---|---|
| 2018 | Balearic Islands, Minorca, Spain | Tsunami waves | [155] |
| 2018 | West of Ireland | Storm waves | [18] |
| 2019 | Penang Island, Malaysia | Tsunami waves | [156] |
| 2019 | Northeastern coastline, Oman | Tsunamigenic | [114] |
| 2019 | wave-tank experiments | Storm and Tsunami waves | [91] |
| 2019 | Hachijo Island, Japan | Storm waves | [157] |
| 2019 | Northern Adriatic coast, Croatia | Extreme storm events | [69] |
| 2019 | Ensenada Almeja, Mexico | Hurricane-generated storm waves | [158] |
| 2020 | Atacama Desert, Chile | Tsunami waves | [159] |
| 2020 | West coast, Portugal | Storm events | [68] |
| 2020 | Ryukyu Islands, Japan | Storm waves from typhoons | [160] |
| 2020 | General review on rocky coasts | Storm and tsunami impacts waves | [161] |
| 2020 | Cape Greco, Cyprus | Tsunami waves | [162] |
| 2021 | Nicaragua | Tsunami waves | [163] |
| 2021 | General review | Tsunami waves | [161] |
| 2021 | General review on rocky coasts | Tsunamis and storm waves | [53] |
| 2021 | Southern Apulia coast, Italy | Storm waves | [164] |
| 2021 | Rabat coast, Morocco | Storm waves | [31] |
| 2022 | Kudaka Island, Japan | Storm waves | [165] |
| 2022 | Nankai Trough, Japan | Tsunami waves | [166] |
| 2022 | Mana Island, Croatia | Storm waves | [167] |
| 2022 | India—Eastern Arabian Sea coast | Storm and tsunami waves | [168] |
| 2022 | Laghdira rocky shore platform, Morocco | Storm waves | [108] |
| 2022 | Pasuquin, Philippines | Extreme typhoon waves | [169] |
| 2023 | Balearic Islands, Spain | Tsunami waves | [113] |
| 2023 | Balearic Islands, Spain | Tsunami waves | [112] |
| 2023 | Japan | Storm and tsunami waves | [170] |
| 2023 | Cape Cope, Murcia, Spain | Holocene tsunami linked to seismic activity | [171] |
| 2023 | Whalers Way, southern Eyre Peninsula, South Australia | Storm waves | [49] |
| 2024 | Hawaiʻi, USA | Tsunami waves | [172] |
| 2024 | Lanzarote, Canary Islands, Spain | Tsunami waves | [5] |
| 2024 | Safi coast, Morocco | Storm and tsunami waves | [173] |
| 2024 | Makran Coast, Pakistan | Tsunami waves | [66] |
| 2024 | Coastal sites, Cuba | Storm waves | [174] |
| 2025 | Pantelleria Island, Italy | Storm waves | [70] |
| 2025 | Andaman Sea coast, Thailand | Tsunami waves | [175] |
| 2025 | North Carolina, USA | Tsunami waves | [176] |
| 2025 | Canary Islands, Spain | Tsunami waves | [177] |
| 2025 | Netherlands, Japan and UK | Tsunami waves | [178] |
| 2025 | Sakishima Islands, Japan | Tsunami waves | [115] |
| 2025 | Mostaganem region, Algeria | Storm and tsunami waves | [179] |
| 2025 | Gulf of Laconia, Greece | Tsunami waves | [116] |
| Diagnostic Parameter | Tsunami-Emplaced CBDs | Storm-Emplaced CBDs | References |
|---|---|---|---|
| Typical Boulder Size | Often >100 t; megaclasts up to 3400 t (e.g., Obi-iwa, Japan). | Typically <200 t, though exceptional cases up to 500 t (Aran Islands, Ireland). | [63,144,151,153,171] |
| Elevation Above MSL | Commonly 10–40 m, occasionally >50 m on uplifted coasts. | Usually <25 m; exceptional during storm surge + infragravity amplification. | [18,63,133,147] |
| Inland Reach | 100–750 m inland; continuous ridges or scattered inland clusters. | <150 m inland; patchy clusters in topographic lows. | [5,131,144] |
| Imbrication and Ridge Morphology | Bidirectional or seaward–landward imbrication; continuous linear ridges parallel to coast. | Landward-dipping imbrication; irregular ridge geometry; scattered orientation. | [18,63,158] |
| Chronology and Dating Evidence | Radiocarbon, OSL, cosmogenic nuclide dating shows centennial–millennial recurrence intervals. | Modern to sub-recent ages (decadal scale); sometimes confirmed by instrumental or historical storm records. | [31,65,138] |
| Transport Dynamics | Sustained unidirectional bore-like flow; long-period waves (>100 s). | Oscillatory short-period waves (10–20 s) with infragravity enhancement. | [18,53,57] |
| Typical Coastal Setting | Tectonically active or volcanic margins (Japan, Chile, Mediterranean, Oman). | Mid-latitude and tropical coasts exposed to high storm energy (Ireland, Portugal, Philippines). | [63,133,147] |
| Preservation and Reworking | Long-term preservation; may be overprinted by later storms. | Frequently reworked during subsequent storm seasons. | [134,164] |
| Knowledge Gap/Limitation | Geographic or Thematic Context | Scientific Implications | Proposed Methodological Approaches |
|---|---|---|---|
| 1. Limited multi-proxy dating frameworks in tropical and volcanic island settings | Southeast Asia, Pacific islands, Indian Ocean | Chronological uncertainty hampers distinction between storm and tsunami emplacement events | Combine radiocarbon, OSL, and cosmogenic nuclide dating with lichenometry and VRM paleomagnetism for event sequencing |
| 2. Insufficient integration between onshore and offshore records | Mediterranean, Atlantic, and Pacific margins | Lack of linkage between coastal boulder fields and submarine source mechanisms (e.g., landslides, fault ruptures) | Couple boulder mapping with marine geophysical surveys (bathymetry, seismic profiles) and sediment coring to reconstruct event sources |
| 3. Sparse long-term monitoring of storm-induced boulder dynamics | Mid-latitude Atlantic coasts (Ireland, Portugal, UK) | Underestimation of cumulative storm reworking and transport thresholds | Deploy permanent UAV/LiDAR monitoring networks, wave buoys, and time-lapse imaging to record multi-event displacement |
| 4. Underrepresentation of microstructural and petrophysical analyses of boulder materials | Global | Mechanical heterogeneity in lithologies affects transport thresholds | Incorporate laboratory rock-strength testing, fracture mapping, and 3D scanning to constrain entrainment mechanics |
| 5. Inconsistent terminology and metadata standards across regional inventories | Global | Hinders reproducibility and cross-site comparison | Develop standardized global CBD databases (GIS-integrated) with unified terminology and metadata protocols |
| 6. Uncertainty in hydrodynamic modeling parameters and boundary conditions | Modeling studies in Japan, Chile, Oman | Limits the accuracy of wave-force reconstructions and IoM estimates | Employ fully 3D, time-dependent CFD and Boussinesq models calibrated with field-measured forces and laboratory flume experiments |
| 7. Limited exploration of compound and cascading events (tsunami + storm overlap) | Coastal deltas, estuaries, and island arcs | Overlapping depositional signatures misinterpreted as single events | Conduct numerical experiments on multi-forcing scenarios and analyze sedimentary sequences for multi-event stratigraphy |
| 8. Lack of studies linking CBD reworking to future climate change projections | Global, especially low-lying coasts | Fails to anticipate future frequency/intensity shifts under rising sea level and changing storm regimes | Integrate CMIP6-based wave-climate projections with boulder transport models to assess evolving hazard thresholds |
| 9. Minimal use of machine learning and AI for CBD pattern recognition | Global | Manual classification of boulder fields is time-consuming and subjective | Apply deep learning (CNNs, object detection) on UAV/LiDAR datasets for automated mapping and change detection |
| 10. Limited understanding of human and ecological impacts of boulder transport | Coastal infrastructure and ecosystems | Lack of integration between geomorphic and socio-environmental hazard assessments | Combine CBD hazard mapping with coastal risk modeling, ecosystem vulnerability indices, and remote sensing-based exposure analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharnate, A.; Sanad, H.; Oueld Lhaj, M.; Mhammdi, N. A Comprehensive Review of Polygenetic Signatures, Methodological Advances, and Implications for Coastal Boulder Deposits (CBDs) Assessment. GeoHazards 2025, 6, 69. https://doi.org/10.3390/geohazards6040069
Gharnate A, Sanad H, Oueld Lhaj M, Mhammdi N. A Comprehensive Review of Polygenetic Signatures, Methodological Advances, and Implications for Coastal Boulder Deposits (CBDs) Assessment. GeoHazards. 2025; 6(4):69. https://doi.org/10.3390/geohazards6040069
Chicago/Turabian StyleGharnate, Asma, Hatim Sanad, Majda Oueld Lhaj, and Nadia Mhammdi. 2025. "A Comprehensive Review of Polygenetic Signatures, Methodological Advances, and Implications for Coastal Boulder Deposits (CBDs) Assessment" GeoHazards 6, no. 4: 69. https://doi.org/10.3390/geohazards6040069
APA StyleGharnate, A., Sanad, H., Oueld Lhaj, M., & Mhammdi, N. (2025). A Comprehensive Review of Polygenetic Signatures, Methodological Advances, and Implications for Coastal Boulder Deposits (CBDs) Assessment. GeoHazards, 6(4), 69. https://doi.org/10.3390/geohazards6040069

