Advances in Genetic Breeding of Sweetpotato

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Plant Genetics and Genomics".

Deadline for manuscript submissions: closed (20 November 2024) | Viewed by 10347

Special Issue Editor

Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Jiangsu Xuzhou Sweetpotato Research Center/Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221131, China
Interests: sweet potato; genetic breeding; gene function; molecular biology

Special Issue Information

Dear Colleagues,

Sweetpotato is one of the most important crops in the world and the main carbohydrate source for human beings. The important agronomic traits, i.e., high yield, outstanding quality, and resistance to biotic and abiotic stress have become the main objects in sweetpotato genetic breeding.

In recent years, with the development of RNA-sequencing and other omics technologies, many key genes have been discovered and their functions have also been revealed. This Special Issue is focused on recent research progress in genetic diversity analysis, QTL or gene discovery, molecular mechanism study, molecular marker-assisted breeding techniques, and the development of sweetpotato genetic breeding.

Dr. Meng Kou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sweet potato
  • genetic breeding
  • gene function
  • molecular biology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 4546 KiB  
Article
Potential Utility of Bacillus amyloliquefaciens SFB-1 as a Biocontrol Agent for Sweetpotato Black Rot Caused by Ceratocystis fimbriata
by Fangyuan Gao, Xiaosi Zhou, Dongjing Yang, Jingwei Chen, Veronica Tshegofatso Kgosi, Chengling Zhang, Jukui Ma, Wei Tang, Zhao Liang and Houjun Sun
Genes 2024, 15(12), 1540; https://doi.org/10.3390/genes15121540 - 28 Nov 2024
Cited by 1 | Viewed by 800
Abstract
Background/Objectives: Sweetpotato black rot, caused by Ceratocystis fimbriata, is a severe fungal disease in sweetpotato production. Biological control strategies represent a promising, environmentally sustainable approach to managing this disease. This study investigates the biocontrol potential of Bacillus amyloliquefaciens SFB-1 against C. [...] Read more.
Background/Objectives: Sweetpotato black rot, caused by Ceratocystis fimbriata, is a severe fungal disease in sweetpotato production. Biological control strategies represent a promising, environmentally sustainable approach to managing this disease. This study investigates the biocontrol potential of Bacillus amyloliquefaciens SFB-1 against C. fimbriata. Methods: The antagonistic activities of strain SFB-1 on C. fimbriata were assessed through in vitro assays, including evaluations of mycelial inhibition, spore germination, and mycelial morphology. Pathogenicity assays on harvested sweetpotato roots assessed lesion diameter and depth. A transcriptomic analysis of C. fimbriata exposed to strain SFB-1 was performed to explore the underlying antifungal mechanism of SFB-1 on C. fimbriata. The qRT-PCR was employed to validate the RNA-seq results. Results: In vitro assays demonstrated that strain SFB-1 inhibited C. fimbriata mycelial growth by up to 81.01%, caused mycelial swelling, and completely suppressed spore germination at 108 CFU/mL. The cell-free supernatant of strain SFB-1 also suppressed C. fimbriata growth. Pathogenicity assays revealed that strain SFB-1 treatments reduced lesion diameter and depth on harvested sweetpotato roots by over 50% compared to untreated controls. Transcriptomic analysis of C. fimbriata treated with strain SFB-1 identified 1164 differentially expressed genes, with significant alterations in genes associated with cell wall integrity, cell membrane stability, spore germination, detoxification, and antioxidant responses. The qRT-PCR validation of 16 genes confirmed the consistency with the RNA-seq results. Conclusions: B. amyloliquefaciens SFB-1 demonstrates significant biocontrol efficacy against C. fimbriata through multiple mechanisms, positioning it as a promising solution for the sustainable management of sweetpotato black rot. Full article
(This article belongs to the Special Issue Advances in Genetic Breeding of Sweetpotato)
Show Figures

Figure 1

13 pages, 3303 KiB  
Article
A Public Mid-Density Genotyping Platform for Hexaploid Sweetpotato (Ipomoea batatas [L.] Lam)
by Dongyan Zhao, Alexander M. Sandercock, Maria Katherine Mejia-Guerra, Marcelo Mollinari, Kasia Heller-Uszynska, Phillip A. Wadl, Seymour A. Webster, Craig T. Beil and Moira J. Sheehan
Genes 2024, 15(8), 1047; https://doi.org/10.3390/genes15081047 - 9 Aug 2024
Viewed by 1678
Abstract
Small public breeding programs focused on specialty crops have many barriers to adopting technology, particularly creating and using genetic marker panels for genomic-based decisions in selection. Here, we report the creation of a DArTag panel of 3120 loci distributed across the sweetpotato ( [...] Read more.
Small public breeding programs focused on specialty crops have many barriers to adopting technology, particularly creating and using genetic marker panels for genomic-based decisions in selection. Here, we report the creation of a DArTag panel of 3120 loci distributed across the sweetpotato (Ipomoea batatas [L.] Lam) genome for molecular-marker-assisted breeding and genomic prediction. The creation of this marker panel has the potential to bring cost-effective and rapid genotyping capabilities to sweetpotato breeding programs worldwide. The open access provided by this platform will allow the genetic datasets generated on the marker panel to be compared and joined across projects, institutions, and countries. This genotyping resource has the power to make routine genotyping a reality for any breeder of sweetpotato. Full article
(This article belongs to the Special Issue Advances in Genetic Breeding of Sweetpotato)
Show Figures

Figure 1

16 pages, 5151 KiB  
Article
Transcriptome Analysis Reveals Genes and Pathways Associated with Drought Tolerance of Early Stages in Sweet Potato (Ipomoea batatas (L.) Lam.)
by Peng Cheng, Fanna Kong, Yang Han, Xiaoping Liu and Jiaping Xia
Genes 2024, 15(7), 948; https://doi.org/10.3390/genes15070948 - 19 Jul 2024
Viewed by 1702
Abstract
The yield of sweet potato [Ipomoea batatas (L.) Lam] can be easily threatened by drought stress. Typically, early stages like the seedling stage and tuber-root expansion stage are more vulnerable to drought stress. In this study, a highly drought-tolerant sweet potato cultivar [...] Read more.
The yield of sweet potato [Ipomoea batatas (L.) Lam] can be easily threatened by drought stress. Typically, early stages like the seedling stage and tuber-root expansion stage are more vulnerable to drought stress. In this study, a highly drought-tolerant sweet potato cultivar “WanSu 63” was subjected to drought stress at both the seedling stage (15 days after transplanting, 15 DAT) and the tuber-root expansion stage (45 DAT). Twenty-four cDNA libraries were constructed from leaf segments and root tissues at 15 and 45 DAT for Next-Generation Sequencing. A total of 663, 063, and 218 clean reads were obtained and then aligned to the reference genome with a total mapped ratio greater than 82.73%. A sum of 7119, 8811, 5463, and 930 differentially expressed genes were identified from leaves in 15 days (L15), roots in 15 days (R15), leaves in 45 days (L45), and roots in 45 days (R45), respectively, in drought stress versus control. It was found that genes encoding heat shock proteins, sporamin, LEA protein dehydrin, ABA signaling pathway protein gene NCED1, as well as a group of receptor-like protein kinases genes were enriched in differentially expressed genes. ABA content was significantly higher in drought-treated tissues than in the control. The sweet potato biomass declined sharply to nearly one-quarter after drought stress. In conclusion, this study is the first to identify the differentially expressed drought-responsive genes and signaling pathways in the leaves and roots of sweet potato at the seedling and root expansion stages. The results provide potential resources for drought resistance breeding of sweet potato. Full article
(This article belongs to the Special Issue Advances in Genetic Breeding of Sweetpotato)
Show Figures

Figure 1

13 pages, 2561 KiB  
Article
A Small Auxin-Up RNA Gene, IbSAUR36, Regulates Adventitious Root Development in Transgenic Sweet Potato
by Yuanyuan Zhou, Aixian Li, Taifeng Du, Zhen Qin, Liming Zhang, Qingmei Wang, Zongyun Li and Fuyun Hou
Genes 2024, 15(6), 760; https://doi.org/10.3390/genes15060760 - 10 Jun 2024
Cited by 2 | Viewed by 1557
Abstract
Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes [...] Read more.
Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter β-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes. Full article
(This article belongs to the Special Issue Advances in Genetic Breeding of Sweetpotato)
Show Figures

Figure 1

21 pages, 10875 KiB  
Article
A Sweet Potato MYB Transcription Factor IbMYB330 Enhances Tolerance to Drought and Salt Stress in Transgenic Tobacco
by Chong Wang, Jian Lei, Xiaojie Jin, Shasha Chai, Chunhai Jiao, Xinsun Yang and Lianjun Wang
Genes 2024, 15(6), 693; https://doi.org/10.3390/genes15060693 - 26 May 2024
Cited by 5 | Viewed by 1610
Abstract
MYB transcription factors (TFs) play vital roles in plant growth, development, and response to adversity. Although the MYB gene family has been studied in many plant species, there is still little known about the function of R2R3 MYB TFs in sweet potato in [...] Read more.
MYB transcription factors (TFs) play vital roles in plant growth, development, and response to adversity. Although the MYB gene family has been studied in many plant species, there is still little known about the function of R2R3 MYB TFs in sweet potato in response to abiotic stresses. In this study, an R2R3 MYB gene, IbMYB330 was isolated from sweet potato (Ipomoea batatas). IbMYB330 was ectopically expressed in tobacco and the functional characterization was performed by overexpression in transgenic plants. The IbMYB330 protein has a 268 amino acid sequence and contains two highly conserved MYB domains. The molecular weight and isoelectric point of IbMYB330 are 29.24 kD and 9.12, respectively. The expression of IbMYB330 in sweet potato is tissue-specific, and levels in the root were significantly higher than that in the leaf and stem. It showed that the expression of IbMYB330 was strongly induced by PEG-6000, NaCl, and H2O2. Ectopic expression of IbMYB330 led to increased transcript levels of stress-related genes such as SOD, POD, APX, and P5CS. Moreover, compared to the wild-type (WT), transgenic tobacco overexpression of IbMYB330 enhanced the tolerance to drought and salt stress treatment as CAT activity, POD activity, proline content, and protein content in transgenic tobacco had increased, while MDA content had decreased. Taken together, our study demonstrated that IbMYB330 plays a role in enhancing the resistance of sweet potato to stresses. These findings lay the groundwork for future research on the R2R3-MYB genes of sweet potato and indicates that IbMYB330 may be a candidate gene for improving abiotic stress tolerance in crops. Full article
(This article belongs to the Special Issue Advances in Genetic Breeding of Sweetpotato)
Show Figures

Figure 1

23 pages, 7508 KiB  
Article
Genome-Wide Identification and Expression Analysis of the DMP and MTL Genes in Sweetpotato (Ipomoea batatas L.)
by Zhiyuan Pan, Zongyun Li, Yonghua Han and Jian Sun
Genes 2024, 15(3), 354; https://doi.org/10.3390/genes15030354 - 12 Mar 2024
Cited by 1 | Viewed by 2217
Abstract
Sweetpotato (Ipomoea batatas L.) is a strategic crop with both economic and energy value. However, improving sweetpotato varieties through traditional breeding approaches can be a time-consuming and labor-intensive process due to the complex genetic nature of sweetpotato as a hexaploid species (2n [...] Read more.
Sweetpotato (Ipomoea batatas L.) is a strategic crop with both economic and energy value. However, improving sweetpotato varieties through traditional breeding approaches can be a time-consuming and labor-intensive process due to the complex genetic nature of sweetpotato as a hexaploid species (2n = 6x = 90). Double haploid (DH) breeding, based on in vivo haploid induction, provides a new approach for rapid breeding of crops. The success of haploid induction can be achieved by manipulating specific genes. Two of the most critical genes, DMP (DUF679 membrane proteins) and MTL (MATRILINEAL), have been shown to induce haploid production in several species. Here, we identified and characterized DMP and MTL genes in sweetpotato using gene family analysis. In this study, we identified 5 IbDMPs and 25 IbpPLAs. IbDMP5 and IbPLAIIs (IbPLAIIκ, IbPLAIIλ, and IbPLAIIμ) were identified as potential haploid induction (HI) genes in sweetpotato. These results provide valuable information for the identification and potential function of HI genes in sweetpotato and provide ideas for the breeding of DH lines. Full article
(This article belongs to the Special Issue Advances in Genetic Breeding of Sweetpotato)
Show Figures

Figure 1

Back to TopTop